3 resultados para Rotordynamics


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Diagnostics of rotating machinery has developed significantly in the last decades, and industrial applications are spreading in different sectors. Most applications are characterized by varying velocities of the shaft and in many cases transients are the most critical to monitor. In these variable speed conditions, fault symptoms are clearer in the angular/order domains than in the common time/frequency ones. In the past, this issue was often solved by synchronously sampling data by means of phase locked circuits governing the acquisition; however, thanks to the spread of cheap and powerful microprocessors, this procedure is nowadays rarer; sampling is usually performed at constant time intervals, and the conversion to the order domain is made by means of digital signal processing techniques. In the last decades different algorithms have been proposed for the extraction of an order spectrum from a signal sampled asynchronously with respect to the shaft rotational velocity; many of them (the so called computed order tracking family) use interpolation techniques to resample the signal at constant angular increments, followed by a common discrete Fourier transform to shift from the angular domain to the order domain. A less exploited family of techniques shifts directly from the time domain to the order spectrum, by means of modified Fourier transforms. This paper proposes a new transform, named velocity synchronous discrete Fourier transform, which takes advantage of the instantaneous velocity to improve the quality of its result, reaching performances that can challenge the computed order tracking.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A aplicação das ligas com memória de forma (shape memory alloys – SMA) têm se mostrado como uma alternativa promissora no controle de vibração de máquinas e estruturas, devido principalmente aos fenômenos de memória de forma e pseudoelástico que elas apresentam. Do mesmo modo, tais ligas proporcionam grandes forças de recuperação e capacidade de amortecimento quando comparadas aos materiais tradicionais. Na literatura científica encontra-se um grande número de trabalhos que tratam da aplicação das SMA no controle de vibração em estruturas. Contudo, a aplicação desse tipo de material em máquinas rotativas ainda é um assunto pouco abordado. Nesse sentido, busca-se explorar numericamente o comportamento de atuadores baseados em ligas com memória de forma para o controle de vibração em máquinas rotativas. Na primeira análise deste trabalho um rotor tipo Jeffcott com luvas SMA em um dos mancais é utilizado. São empregadas diferentes espessuras de luvas nos estados martensítico e austenítico e as variações em termos de amplitude e frequência são então comparadas. Posteriormente, dois diferentes sistemas rotativos com dois discos e molas SMA aplicadas em um e dois mancais são estudados sob configurações variadas. As molas foram posicionadas externamente aos mancais e a temperatura de operação desses componentes é ajustada de acordo com a necessidade do controle de vibração. Além disso, foi utilizado um código computacional para a representação do comportamento termomecânico de molas SMA assim como um programa baseado no Método de Elementos Finitos (MEF) para a simulação do comportamento dinâmico dos rotores. Os resultados das análises numéricas demonstram que as SMA são eficientes no controle de vibração de sistemas rotativos devido obterem-se reduções significativas das amplitudes de deslocamento, modificações nas velocidades críticas, supressão de movimentos indesejáveis e controle das órbitas de precessão.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slender rotating structures are used in many mechanical systems. These structures can suffer from undesired vibrations that can affect the components and safety of a system. Furthermore, since some these structures can operate in a harsh environment, installation and operation of sensors that are needed for closed-loop and collocated control schemes may not be feasible. Hence, the need for an open-loop non-collocated scheme for control of the dynamics of these structures. In this work, the effects of drive speed modulation on the dynamics of slender rotating structures are studied. Slender rotating structures are a type of mechanical rotating structures, whose length to diameter ratio is large. For these structures, the torsion mode natural frequencies can be low. In particular, for isotropic structures, the first few torsion mode frequencies can be of the same order as the first few bending mode frequencies. These situations can be conducive for energy transfer amongst bending and torsion modes. Scenarios with torsional vibrations experienced by rotating structures with continuous rotor-stator contact occur in many rotating mechanical systems. Drill strings used in the oil and gas industry are an example of rotating structures whose torsional vibrations can be deleterious to the components of the drilling system. As a novel approach to mitigate undesired vibrations, the effects of adding a sinusoidal excitation to the rotation speed of a drill string are studied. A portion of the drill string located within a borewell is considered and this rotating structure has been modeled as an extended Jeffcott rotor and a sinusoidal excitation has been added to the drive speed of the rotor. After constructing a three-degree-of-freedom model to capture lateral and torsional motions, the equations of motions are reduced to a single differential equation governing torsional vibrations during continuous stator contact. An approximate solution has been obtained by making use of the Method of Direct Partition of Motions with the governing torsional equation of motion. The results showed that for a rotor undergoing forward or backward whirling, the addition of sinusoidal excitation to the drive speed can cause an increase in the equivalent torsional stiffness, smooth the discontinuous friction force at contact, and reduce the regions of negative slope in the friction coefficient variation with respect to speed. Experiments with a scaled drill string apparatus have also been conducted and the experimental results show good agreement with the numerical results obtained from the developed models. These findings suggest that the extended Jeffcott rotordynamics model can be useful for studies of rotor dynamics in situations with continuous rotor-stator contact. Furthermore, the results obtained suggest that the drive speed modulation scheme can have value for attenuating drill-string vibrations.