934 resultados para Rotational motion of artificial satellites
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Using a canonical formulation, the stability of the rotational motion of artificial satellites is analyzed considering perturbations due to the gravity gradient torque. Here Andoyer's variables are used to describe the rotational motion. One of the approaches that allow the analysis of the stability of Hamiltonian systems needs the reduction of the Hamiltonian to a normal form. Firstly equilibrium points are found. Using generalized coordinates, the Hamiltonian is expanded in the neighborhood of the linearly stable equilibrium points. In a next step a canonical linear transformation is used to diagonalize the matrix associated to the linear part of the system. The quadratic part of the Hamiltonian is normalized. Based in a Lie-Hori algorithm a semi-analytic process for normalization is applied and the Hamiltonian is normalized up to the fourth order. Once the Hamiltonian is normalized up to order four, the analysis of stability of the equilibrium point is performed using the theorem of Kovalev and Savichenko. This semi-analytical approach was applied considering some data sets of hypothetical satellites. For the considered satellites it was observed few cases of stable motion. This work contributes for space missions where the maintenance of spacecraft attitude stability is required.
Resumo:
This study at aims performing the stability analysis of the rotational motion to artificial satellites using quaternions to describe the satellite attitude (orientation on the space). In the system of rotational motion equations, which is composed by four kinematic equations of the quaternions and by the three Euler equations in terms of the rotational spin components. The influence of the gravity gradient and the direct solar radiation pressure torques have been considered. Equilibrium points were obtained through numerical simulations using the softwares Matlab and Octave, which are then analyzed by the Routh-Hurwitz Stability Criterion.
Resumo:
A semi-analytical approach is proposed to study the rotational motion of an artificial satellite under the influence of the torque due to the solar radiation pressure and taking into account the influence of Earth's shadow. The Earth's shadow is introduced in the equations for the rotational motion as a function depending on the longitude of the Sun, on the ecliptic's obliquity and on the orbital parameters of the satellite. By mapping and computing this function, we can get the periods in which the satellite is not illuminated and the torque due to the solar radiation pressure is zero. When the satellite is illuminated, a known analytical solution is used to predict the satellite's attitude. This analytical solution is expressed in terms of Andoyer's variables and depends on the physical and geometrical properties of the satellite and on the direction of the Sun radiation flux. By simulating a hypothetical circular cylindrical type satellite, an example is exhibited and the results agree quite well when compared with a numerical integration. © 1997 COSPAR. Published by Elsevier Science Ltd.
Resumo:
Effects due to resonances in the orbital motion of artificial satellites disturbed by the terrestrial tide are analyzed. The nodal co-rotation resonance, apsidal co-rotation resonance and the Lidov-Kozai's mechanism are studied. The effects of the resonances are analyzed through the variations of the metric orbital elements. Libration and circulation motions for high orbits with high eccentricities are verified for the Lidov-Kozai's mechanism.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Física - FEG
Resumo:
The rotational motion of an artificial satellite is studied by considering torques produced by gravity gradient and direct solar radiation pressure. A satellite of circular cylinder shape is considered here, and Andoyers variables are used to describe the rotational motion. Expressions for direct solar radiation torque are derived. When the earth's shadow is not considered, an analytical solution is obtained using Lagrange's method of variation of parameters. A semi-analytical procedure is proposed to predict the satellite's attitude under the influence of the earth's shadow. The analytical solution shows that angular variables are linear and periodic functions of time while their conjugates suffer only periodic variations. When compared, numerical and analytical solutions have a good agreement during the time range considered.
Resumo:
The determination of a specific orbit and the procedure to calculate orbital maneuvers of artificial satellites are problems of extreme importance in the study of orbital mechanics. Therefore, the transferring problem of a spaceship from one orbit to another, and the attention due to this subject has in increased during the last years. Many applications can be found in several space activities, for example, to put a satellite in a geostationary orbit, to change the position of a spaceship, to maintain a specific satellite's orbit, in the design of an interplanetary mission, and others. The Brazilian Satellite SCD-1 (Data Collecting Satellite) will be used as example in this paper. It is the first satellite developed entirely in Brazil, and it remains in operation to this date. SCD-1 was designed, developed, built, and tested by Brazilian scientists, engineers, and technicians working at INPE (National Institute for Space Research, and in Brazilian Industries. During the lifetime, it might be necessary do some complementary maneuvers, being this one either an orbital transferring, or just to make periodical corrections. The purpose of transferring problem is to change the position, velocity and the satellite's mass to a new pre determined state. This transfer can be totally linked (in the case of "Rendezvous") or partially free (free time, free final velocity, etc). In the global case, the direction, the orientation and the magnitude of the thrust to be applied must be chosen, respecting the equipment's limit. In order to make this transferring, either sub-optimal or optimal maneuvers may be used. In the present study, only the sub-optimal will be shown. Hence, this method will simplify the direction of thrust application, to allow a fast calculation that may be used in real time, with a very fast processing. The thrust application direction to be applied will be assumed small and constant, and the purpose of this paper is to find the time interval that the thrust is applied. This paper is basically divided into three parts: during the first one the sub-optimal maneuver is explained and detailed, the second presents the Satellite SCD-1, and finally the last part shows the results using the sub-optimal maneuver applied to the Brazilian Satellite.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)