998 resultados para Rotating systems
Resumo:
Linear parameter varying (LPV) control is a model-based control technique that takes into account time-varying parameters of the plant. In the case of rotating systems supported by lubricated bearings, the dynamic characteristics of the bearings change in time as a function of the rotating speed. Hence, LPV control can tackle the problem of run-up and run-down operational conditions when dynamic characteristics of the rotating system change significantly in time due to the bearings and high vibration levels occur. In this work, the LPV control design for a flexible shaft supported by plain journal bearings is presented. The model used in the LPV control design is updated from unbalance response experimental results and dynamic coefficients for the entire range of rotating speeds are obtained by numerical optimization. Experimental implementation of the designed LPV control resulted in strong reduction of vibration amplitudes when crossing the critical speed, without affecting system behavior in sub- or supercritical speeds. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This study evaluates the effects of environmental variables on traditional and alternative agroecosystems in three Ejidos (communal lands) in the Chiapas rainforest in Mexico. The tests occurred within two seasonal agricultural cycles. In spring-summer, experiments were performed with the traditional slash, fell and burn (S-F-B) system, no-burn systems and rotating systems with Mucuna deeringiana Bort., and in the autumn-winter agricultural cycle, three no-burn systems were compared to evaluate the effect of alternative sowing with corn (no-burn and topological modification of sowing). The results show a high floristic diversity in the study area (S_S = 4 - 23%), with no significant differences among the systems evaluated. In the first cycle, the analysis of the agronomical variables of the corn indicated better properties in the fallowing systems, with an average yield of 1950 kg ha^‑1, but there was variation related to the number of years left fallow. In the second cycle, the yields were positive for the alternative technology (average yield 3100 kg ha^‑1). The traditional S-F-B systems had reduced pests and increased organic matter and soil phosphorous content. These results are the consequence of fallow periods and adaptation to the environment; thus, this practice in the Chiapas rainforest constitutes an ethnocultural reality, which is unlikely to change in the near future if the agrosystems are managed based on historical principles.
Resumo:
In this work, a method of computing PD stabilising gains for rotating systems is presented based on the D-decomposition technique, which requires the sole knowledge of frequency response functions. By applying this method to a rotating system with electromagnetic actuators, it is demonstrated that the stability boundary locus in the plane of feedback gains can be easily plotted, and the most suitable gains can be found to minimise the resonant peak of the system. Experimental results for a Laval rotor show the feasibility of not only controlling lateral shaft vibration and assuring stability, but also helps in predicting the final vibration level achieved by the closed-loop system. These results are obtained based solely on the input-output response information of the system as a whole.
Resumo:
In this thesis project, I present stationary models of rotating fluids with toroidal distributions that can be used to represent the active galactic nuclei (AGN) central obscurers, i.e. molecular tori (Combes et al., 2019), as well as geometrically thick accretion discs, like ADAF discs (Narayan and Yi, 1995) or Polish doughnuts (Abramowicz, 2005). In particular, I study stationary rotating systems with a more general baroclinic distribution (with a vertical gradient of the angular velocity), which are often more realistic and less studied, due to their complexity, than the barotropic ones (with cylindrical rotation), which are easier to construct. In the thesis, I compute analytically the main intrinsic and projected properties of the power-law tori based on the potential-density pairs of Ciotti and Bertin (2005). I study the density distribution and the resulting gravitational potential for different values of α, in the range 2 < α < 5. For the same models, I compute the surface density of the systems when seen face-on and edge-on. I then apply the stationary Euler equations to obtain rotational velocity and temperature distributions of the self-gravitating models in the absence of an external gravitational potential. In the thesis I also consider the power-law tori with the presence of a central black hole in addition to the gas self-gravity, and solving analytically the stationary Euler equations, I compute how the properties of the system are modified by the black hole and how they vary as a function of the black hole mass. Finally, applying the Solberg-Høiland criterion, I show that these baroclinic stationary models are linearly stable in the absence of the black hole. In the presence of the black hole I derive the analytical condition for stability, which depends on α and on the black hole mass. I also study the stability of the tori in the hypothesis that they are weakly magnetized, finding that they are always unstable to this instability.
Resumo:
OBJECTIVE: The study examines the implications for shiftworkers of applying different numbers of teams in the organization of shiftwork. METHODS: The participating operators came from five different companies applying continuous shift rotation systems. The companies shared the same product organization and a common corporate culture belonging to the same multinational company. Each company had a shift system consisting of four, five or six teams, with the proportion of shifts outside day work decreasing as the number of teams increased. Questionnaire and documentary data were used as data sources. RESULTS: Operators in systems with additional teams had more daywork but also more irregular working hours due to both overtime and schedule changes. Operators using six teams used fewer social compensation strategies. Operators in four teams were most satisfied with their work hours. Satisfaction with the time available for various social activities outside work varied inconsistently between the groups. CONCLUSIONS: In rotating systems the application of more teams reduces the number of shifts outside day work. This apparent improvement for shiftworkers was counteracted by a concomitant irregularity produced by greater organizational requirements for flexibility. The balance of this interaction was found to have a critical impact on employees.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A aplicação das ligas com memória de forma (shape memory alloys – SMA) têm se mostrado como uma alternativa promissora no controle de vibração de máquinas e estruturas, devido principalmente aos fenômenos de memória de forma e pseudoelástico que elas apresentam. Do mesmo modo, tais ligas proporcionam grandes forças de recuperação e capacidade de amortecimento quando comparadas aos materiais tradicionais. Na literatura científica encontra-se um grande número de trabalhos que tratam da aplicação das SMA no controle de vibração em estruturas. Contudo, a aplicação desse tipo de material em máquinas rotativas ainda é um assunto pouco abordado. Nesse sentido, busca-se explorar numericamente o comportamento de atuadores baseados em ligas com memória de forma para o controle de vibração em máquinas rotativas. Na primeira análise deste trabalho um rotor tipo Jeffcott com luvas SMA em um dos mancais é utilizado. São empregadas diferentes espessuras de luvas nos estados martensítico e austenítico e as variações em termos de amplitude e frequência são então comparadas. Posteriormente, dois diferentes sistemas rotativos com dois discos e molas SMA aplicadas em um e dois mancais são estudados sob configurações variadas. As molas foram posicionadas externamente aos mancais e a temperatura de operação desses componentes é ajustada de acordo com a necessidade do controle de vibração. Além disso, foi utilizado um código computacional para a representação do comportamento termomecânico de molas SMA assim como um programa baseado no Método de Elementos Finitos (MEF) para a simulação do comportamento dinâmico dos rotores. Os resultados das análises numéricas demonstram que as SMA são eficientes no controle de vibração de sistemas rotativos devido obterem-se reduções significativas das amplitudes de deslocamento, modificações nas velocidades críticas, supressão de movimentos indesejáveis e controle das órbitas de precessão.
Resumo:
Pós-graduação em Engenharia Mecânica - FEIS
Resumo:
The ascorbate oxidase is the enzyme used to determine the content of ascorbic acid in the pharmaceutical and food industries and clinics analyses. The techniques currently used for the purification of this enzyme raise its production cost. Thus, the development of alternative processes and with the potential to reduce costs is interesting. The application of aqueous two-phase system is proposed as an alternative to purification because it enables good separation of biomolecules. The objective of this study was to determine the conditions to continuously pre-purify the enzyme ascorbate oxidase by an aqueous two-phase system (PEG/citrate) using rotating column provided with perforated discs. Under the best conditions (20,000 g/mol PEG molar mass, 10% PEG concentration, and 25% citrate concentration), the system showed satisfactory results (partition coefficient, 3.35; separation efficiency, 54.98%; and purification factor, 1.46) and proved suitable for the pre-purification of ascorbate oxidase in continuous process.
Resumo:
Polarization curves experimentally obtained in the electro-dissolution of iron in a 1 M H2SO4 solution using a rotating disc as the working electrode present a current instability region within the range of applied voltage in which the current is controlled by mass transport in the electrolyte. According to the literature (Barcia et. al., 1992) the electro-dissolution process leads to the existence of a viscosity gradient in the interface metal-solution, which leads to a velocity field quantitatively different form the one developed in uniform viscosity conditions and may affect the stability of the hydrodynamic field. The purpose of this work is to investigate whether a steady viscosity profile, depending on the distance to the electrode surface, affects the stability properties of the classic velocity field near a rotating disc. Two classes of perturbations are considered: perturbations monotonically varying along the radial direction, and perturbations periodically modulated along the radial direction. The results show that the hydrodynamic field is always stable with respect to the first class of perturbations and that the neutral stability curves are modified by the presence of a viscosity gradient in the second case, in the sense of reducing the critical Reynolds number beyond which perturbations are amplified. This result supports the hypothesis that the current oscillations observed in the polarization curve may originate from a hydrodynamic instability.
Resumo:
Second order matrix equations arise in the description of real dynamical systems. Traditional modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system matrices. A regrettable consequence of this approach is the discarding of residual o-diagonal terms in the modal damping matrix. This has particular importance for systems containing skew-symmetry in the damping matrix which is entirely discarded in the modal damping matrix. In this paper a method to utilise modal control using the decoupled second order matrix equations involving nonclassical damping is proposed. An example of modal control sucessfully applied to a rotating system is presented in which the system damping matrix contains skew-symmetric components.
Resumo:
Second order matrix equations arise in the description of real dynamical systems. Traditional modal control approaches utilise the eigenvectors of the undamped system to diagonalise the system matrices. A regrettable consequence of this approach is the discarding of residual off-diagonal terms in the modal damping matrix. This has particular importance for systems containing skew-symmetry in the damping matrix which is entirely discarded in the modal damping matrix. In this paper a method to utilise modal control using the decoupled second order matrix equations involving non-classical damping is proposed. An example of modal control successfully applied to a rotating system is presented in which the system damping matrix contains skew-symmetric components.
Resumo:
The CoRoT exoplanet science team announces the discovery of CoRoT-11b, a fairly massive hot-Jupiter transiting a V = 12.9 mag F6 dwarf star (M(*) = 1.27 +/- 0.05 M(circle dot), R(*) = 1.37 +/- 0.03 R(circle dot), T(eff) = 6440 +/- 120 K), with an orbital period of P = 2.994329 +/- 0.000011 days and semi-major axis a = 0.0436 +/- 0.005 AU. The detection of part of the radial velocity anomaly caused by the Rossiter-McLaughlin effect shows that the transit-like events detected by CoRoT are caused by a planet-sized transiting object in a prograde orbit. The relatively high projected rotational velocity of the star (upsilon sin i(star) = 40 +/- 5 km s(-1)) places CoRoT-11 among the most rapidly rotating planet host stars discovered so far. With a planetary mass of M(p) = 2.33 +/- 0.34 M(Jup) and radius R(p) = 1.43 +/- 0.03 R(Jup), the resulting mean density of CoRoT-11b (rho(p) = 0.99 +/- 0.15 g/cm(3)) can be explained with a model for an inflated hydrogen-planet with a solar composition and a high level of energy dissipation in its interior.
Resumo:
This project focused on the investigation and the development of a chemical sensing system for the determination of chromium Cr6+ and a bio-reactor followed by electrochemical detection at a glassy carbon electrode, for the determination of organochlorine compounds. The conjugation of Cr6+ with 1,5-diphenylcarbazide was studied at various types of electrodes such as glassy carbon, ultra-trace epoxy-graphite, chemically or un-modified carbon-paste and dropping-mercury. The cyclic voltammetric behaviour of the complex was also investigated. In addition, the possibility of developing a chemical sensor, Le. an electrochemical probe capable of sensing Cr6+ through its complexation with 1,5-diphenylacarbazide was studied. The conjugations of l-chloro-2,4-dinitrobenzene, 2,4-dichloronitrobenzene and ethacrynic, which are electrophilic organochlorine compounds, with reduced glutathione, were studied in order to test the bioreactor developed, based on the immobilisation of glutathione s-transferase. This was carried out at different types of electrodes such as glassy-carbon, gold, silver, platinum, epoxy-graphite, hangingmercury, and ferrocene-modified rotating-disc electrodes.