985 resultados para Rotação do sol


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Different studies point for an rotation age link following a α tα relationship. The value of the α -parameter has a strong role on the evolutionary behaviour of rotation, because it indicates how strong is the spindown once stars evolve. The well known Skumanich s relation α t −1/2, which is consistent with simple theories of angular momentum loss from rotating stars with magnetic fields and winds, is one of the best accepted. Nevertheless, several studies show clearly that such a relation cannot hold for stars much younger or much older than the Pleiades (100 Mega years) without leading to velocities much greater or much lower than those presently observed. The present study aims at improving this picture on the basis of an enlarged analyses taking into account the role of mass and metallicity on the rotation age relation, based on an unprecedented sample of about 14 000 stars in the solar neighbourhood. From this new approach we show that the α parameter it depends strongly on the stellar age and, by consequence, on the metallicity. In addition, one observes a strong dependence of the referred parameter on the single or binary status of the stars

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of sunspots consistently contributed to a better understanding of magnetic phenomena of the Sun, as its activity. It was found with the dynamics of sunspots that the Sun has a rotation period of twenty-seven days around your axis. With the help of Project Sun-As-A-Star that solar spectra obtained for more than thirty years we observed oscillations of both the depth of the spectral line and its equivalent width, and analysis of the return information about the characteristics of solar magnetism. It also aims to find patterns of solar magnetic activity cycle and the average period of rotation of the Sun will indicate the spectral lines that are sensitive to magnetic activity and which are not. Sensitive lines how Ti II 5381.0 Å stands as the best indicator of the solar rotation period and also shows different periods of rotation cycles of minimum and maximum magnetic activity. It is the first time we observe clearly distinct rotation periods in the different cycles. The analysis also shows that Ca II 8542.1 Å and HI 6562.0 Å indicate the cycle of magnetic activity of eleven years. Some spectral lines no indicated connection with solar activity, this result can help us search for programs planets using spectroscopic models. Data analysis was performed using the Lomb-Scargle method that makes the time series analysis for unequally spaced data. Observe different rotation periods in the cycles of magnetic activity accounts for a discussion has been debated for many decades. We verified that spectroscopy can also specify the period of stellar rotation, thus being able to generalize the method to other stars

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study physical process that control the stellar evolution is strength influenced by several stellar parameters, like as rotational velocity, convective envelope mass deepening, and magnetic field intensity. In this study we analyzed the interconnection of some stellar parameters, as Lithium abundance A(Li), chromospheric activity and magnetic field intensity as well as the variation of these parameters as a function of age, rotational velocity, and the convective envelope mass deepening for a selected sample of solar analogs and twins stars. In particular, we analyzed the convective envelope mass deepening and the dispersion of lithium abundance for these stars. We also studied the evolution of rotation in subgiants stars, because its belong to the following evolutionary stage of solar analogs, and twins stars. For this analyze, we compute evolutionary models with the TGEC code to derive the evolutionary stage, as well as the convective envelope mass deepening, and derive more precisely the stellar mass, and age for this 118 stars. Our Investigation shows a considerable dispersion of lithium abundance for the solar analogs stars. We also realize that this dispersion is not by the convective zone deep, in this way we observed which the scattering of A(Li) can not be explained by classical theories of mixing in the convective zone. In conclusion we have that are necessary extra-mixing process to explain this decrease of Lithium abundance in solar analogs and twins stars. We analyzed the subgiant stars because this are the subsequent evolutionary stage after the solar analogs and twins stars. For this analysis, we compute the rotational period for 30 subgiants stars observed by Co- RoT satellite. For this task we apply two different methods: Lomb-Scargle algorithm, and the Plavchan Periodogram. We apply the TGEC code we compute models with internal distribution of angular momentum to confront the predict results with the models, and the observational results. With this analyze, we showed which solid body rotation models are incompatible with the physical interpretation of observational results. As a result of our study we still concluded that the magnetic field, convective envelope mass deepening, and internal redistribution of angular momentum are essential to explain the evolution of low-mass stars, and its observational characteristics. Based on population synthesis simulation, we concluded that the solar neighborhood presents a considerable quantity of solar twins when compared with the discovered set nowadays. Altogether we foresee the existence around 400 solar analogs in the solar neighborhood (distance of 100 pc). We also study the angular momentum of solar analogs and twins, in this study we concluded that added angular momentum from a Jupiter type planet, putted in the Jupiter position, is not enough to explain the angular momentum predicted by Kraft law (Kraft 1970)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stellar differential rotation is an important key to understand hydromagnetic stellar dynamos, instabilities, and transport processes in stellar interiors as well as for a better treatment of tides in close binary and star-planet systems. The space-borne high-precision photometry with MOST, CoRoT, and Kepler has provided large and homogeneous datasets. This allows, for the first time, the study of differential rotation statistically robust samples covering almost all stages of stellar evolution. In this sense, we introduce a method to measure a lower limit to the amplitude of surface differential rotation from high-precision evenly sampled photometric time series such as those obtained by space-borne telescopes. It is designed for application to main-sequence late-type stars whose optical flux modulation is dominated by starspots. An autocorrelation of the time series is used to select stars that allow an accurate determination of spot rotation periods. A simple two-spot model is applied together with a Bayesian Information Criterion to preliminarily select intervals of the time series showing evidence of differential rotation with starspots of almost constant area. Finally, the significance of the differential rotation detection and a measurement of its amplitude and uncertainty are obtained by an a posteriori Bayesian analysis based on a Monte Carlo Markov Chain (hereafter MCMC) approach. We apply our method to the Sun and eight other stars for which previous spot modelling has been performed to compare our results with previous ones. The selected stars are of spectral type F, G and K. Among the main results of this work, We find that autocorrelation is a simple method for selecting stars with a coherent rotational signal that is a prerequisite to a successful measurement of differential rotation through spot modelling. For a proper MCMC analysis, it is necessary to take into account the strong correlations among different parameters that exists in spot modelling. For the planethosting star Kepler-30, we derive a lower limit to the relative amplitude of the differential rotation. We confirm that the Sun as a star in the optical passband is not suitable for a measurement of the differential rotation owing to the rapid evolution of its photospheric active regions. In general, our method performs well in comparison with more sophisticated procedures used until now in the study of stellar differential rotation

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The study of solar-type stars also includes the familiar solar analogs and twins. These objects have been one of the major research subjects in astrophysics nowadays. A direct comparison of solar activity with chromospheric activity indices for a set of stars very similar to the Sun (twins and analogs) provides an excellent opportunity to study the evolution of stellar activity on timescales of the order of the lifetime on the main sequence. This work deals with the relationship between the abundance of lithium, chromospheric activity, X-ray emission and rotation period in terms of stellar ages. We explore the influence of stellar evolution in the global properties of the stars and the aspects linked to its coronal, chromospheric and magnetic activity. Our main objective is to probe the law of decay of each of these parameters based on a sample of stars classified as well-connected as analogs stars and solar twins.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A construção de conceitos científicos no âmbito escolar ainda precisa ser melhor compreendida. No caso de conceitos relacionados à astronomia, as pesquisas ainda são escassas no Brasil, principalmente quando se trata da Educação de Jovens e Adultos (EJA). O presente estudo objetivou compreender, à luz da Teoria Histórico-Cultural, as formas através das quais estudantes da EJA constroem conceitos relacionados com os movimentos do sistema Terra-Lua-Sol, em suas interações com o professor e os colegas em sala de aula. A pesquisa foi realizada em uma turma do ensino médio da EJA da Escola de Aplicação da Universidade Federal do Pará. A turma era formada por 19 estudantes, com idades variando entre 16 e 37 anos. A coleta de informações foi feita durante um semestre letivo, inicialmente através de questionários. Eles continham perguntas abertas sobre a temática, a fim de investigar as concepções prévias dos estudantes. Posteriormente, as aulas em que o assunto foi ensinado foram gravadas em áudio e vídeo. Nestas aulas os alunos elaboraram individualmente e coletivamente explicações para a sucessão dia-noite na terra. Os grupos foram formados espontaneamente pelos alunos e, em seguida, foram recombinados pelo professor. Os registros foram transcritos e analisados microgeneticamente. As respostas dos estudantes ao questionamento inicial que tratava sobre a sucessão do dia e da noite na Terra foram categorizadas em quatro níveis A, B, C e D desde o mais afastado até o mais próximo do conceito escolar cientificamente aceito. Os resultados obtidos mostraram que 13 estudantes melhoram o perfil conceitual, pois migraram dos níveis A, B ou C para o nível D da categoria de respostas, ou seja, estes estudantes entendiam que a sucessão dianoite era decorrente do movimento de rotação da terra. Os outros seis estudantes, que já se encontravam no nível D, permaneceram nesse nível, porém melhoraram suas explicações em relação as suas respostas iniciais. Foram selecionados três estudantes para a análise microgenética dos percursos da construção de seus conhecimentos. Eles tinham suas respostas escritas iniciais classificadas nos níveis A ou B e durante suas interações com o professor e com os colegas incorporaram elementos do discurso científico, conseguindo elaborar explicações teóricas para o fenômeno observado. Os resultados ilustram diferentes mecanismos de ajuste da ajuda educacional oferecida pelo professor e pelos colegas, que salientam a importância de uma abordagem dialógica e do trabalho com diferentes formatos de grupos em sala de aula.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Processo de Preparação de Zirconia Dopada e não Dopada pela Rota Sol-Gel Usando Nitrato de Zirconila como Material de Partida compreendendo as etapas de preparação de uma solução de nitratos de zirconila e outros nitratos metálicos em solução aquosa com composto orgânico de etanol metanol ou acetona, através do controle de molaridade. Embora não limitantes, valores ideais para molaridade das soluções são: entre 1,00 e 0,29 para obtenção de pó entre 0,29 e 0,18 para obtenção de superfície recoberta e entre 0,18 e 0,13 para obtenção de filmes finos. Manter a solução a 0°C para formação de filmes finos por imersão do substrato ou monocristal com velocidade constante ("dip-coating") ou por rotação a velocidade constante ("spinning"), ou para recobrimento de superfícies metálicas através de imersões sucessivas do substrato metálico a velocidade constante ("dip-coating"). Elevar a solução a 50°C para hidrolização e formação de um gel em forma de pó, secagem de pó ou liofilização, calcinação e moagem dos aglomerados.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents a study of the mechanical properties of thin films. The main aim was to determine the properties of sol-gel derived coatings. These films are used in a range of different applications and are known to be quite porous. Very little work has been carried out in this area and in order to study the mechanical properties of sol-gel films, some of the work was carried out on magnetron sputtered metal coatings in order to validate the techniques developed in this work. The main part of the work has concentrated on the development of various bending techniques to study the elastic modulus of the thin films, including both a small scale three-point bending, as well as a novel bi-axial bending technique based on a disk resting on three supporting balls. The bending techniques involve a load being applied to the sample being tested and the bending response to this force being recorded. These experiments were carried out using an ultra micro indentation system with very sensitive force and depth recording capabilities. By analysing the result of these forces and deflections using existing theories of elasticity, the elastic modulus may be determined. In addition to the bi-axial bending study, a finite element analysis of the stress distribution in a disk during bending was carried out. The results from the bi-axial bending tests of the magnetron sputtered films was confirmed by ultra micro indentation tests, giving information of the hardness and elastic modulus of the films. It was found that while the three point bending method gave acceptable results for uncoated steel substrates, it was very susceptible to slight deformations of the substrate. Improvements were made by more careful preparation of the substrates in order to avoid deformation. However the technique still failed to give reasonable results for coated specimens. In contrast, biaxial bending gave very reliable results even for very thin films and this technique was also found to be useful for determination of the properties of sol-gel coatings. In addition, an ultra micro indentation study of the hardness and elastic modulus of sol-gel films was conducted. This study included conventionally fired films as well as films ion implanted in a range of doses. The indentation tests showed that for implantation of H+ ions at doses exceeding 3x1016 ions/cm2, the mechanical properties closely resembled those of films that were conventionally fired to 450°C.