995 resultados para Root volume


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coffee (Coffea arabica L.) plants were grown in small (3-L), medium (10-L) and large (24-L) pots for 115 or 165 d after transplanting (DAT), which allowed different degrees of root restriction. Effects of altered source : sink ratio were evaluated in order to explore possible stomatal and non-stomatal mechanisms of photosynthetic down-regulation. Increasing root restriction brought about large and general reductions in plant growth associated with a rising root : shoot ratio. Treatments did not affect leaf water potential or leaf nutrient status, with the exception of N content, which dropped significantly with increasing root restriction even though an adequate N supply was available. Photosynthesis was severely reduced when plants were grown in small pots; this was largely associated with non-stomatal factors, such as decreased Rubisco activity. At 165DAT contents of hexose, sucrose, and amino acids decreased in plants grown in smaller pots, while those of starch and hexose-P increased in plants grown in smaller pots. Photosynthetic rates were negatively correlated with the ratio of hexose to free amino acids, but not with hexose content. Activities of acid invertase, sucrose synthase, sucrose-P synthase, fructose-1,6- bisphosphatase, ADP-glucose pyrophosphorylase, starch phosphorylase, glyceraldehyde-3-P dehydrogenase, PPi : fructose-6-P 1-phosphotransferase and NADP : glyceraldehyde-3-P dehydrogenase all decreased with severe root restriction. Glycerate-3-P : Pi and glucose-6-P : fructose-6-P ratios decreased accordingly. Photosynthetic down-regulation was unlikely to have been associated directly with an end-product limitation, but rather with decreases in Rubisco. Such a down-regulation was largely a result of N deficiency caused by growing coffee plants in small pots.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil compaction may be defined as the pressing of soil to make it denser. Soil compaction makes the soil denser, decreases permeability of gas and water exchange as well as alterations in thermal relations, and increases mechanical strength of the soil. Compacted soil can restrict normal root development. Simulations of the root restricting layers in a greenhouse are necessary to develop a mechanism to alleviate soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. This experiment aimed to assess peanut (Arachis hypogea) root volume and root dry matter as a function of bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6g cm-3), and two levels of the soil water content (70 and 90% of field capacity) were used. Treatments were arranged as completely randomized design, with four replications in a 3×2 factorial scheme. The result showed that peanut yield generally responded favorably to subsurface compaction in the presence of high mechanical impedance. This clearly indicates the ability of this root to penetrate the hardpan with less stress. Root volume was not affected by increase in soil bulk density and this mechanical impedance increased root volume when roots penetrated the barrier with less energy. Root growth below the compacted layer (hardpan), was impaired by the imposed barrier. This stress made it impossible for roots to grow well even in the presence of optimum soil water content. Generally soil water content of 70% field capacity (P<0.0001) enhanced greater root proliferation. Nonetheless, soil water content of 90% field capacity in some occasions proved better for root growth. Some of the discrepancies observed were that mechanical impedance is not a good indicator for measuring root growth restriction in greenhouse. Future research can be done using more levels of water to determine the lowest soil water level, which can inhibit plant growth.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil compaction reduces root growth, affecting the yield, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in greenhouses are necessary to develop mechanisms which alleviate soil compaction problems. The selection of three distinct bulk densities based on the Standard Proctor Test is also an important factor to determine which bulk density restricts root penetration. This experiment was conducted to evaluate cotton (Gossypium hirsutum L.) root volume and root dry matter as a function of soil bulk density and water stress. Three levels of soil density (1.2, 1.4, and 1.6 g cm-3), and two levels of water content (70 and 90% of field capacity) were used. A completely randomized design with four replicates in a 3×2 factorial pattern was used. The results showed that mechanical impedance affected root volume positively with soil bulk density of 1.2 and 1.6 g cm-3, enhancing root growth (P>0.0064). Soil water content reduced root growth as root and shoot growth was higher at 70% field capacity than that at 90% field capacity. Shoot growth was not affected by the increase in soil bulk density and this result suggests that soil bulk density is not a good indicator for measuring mechanical impedance in some soils.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Negative effects of soil compaction have been recognized as one of the problems restricting the root system and consequently impairing yields, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in green house studies are necessary for the development of mechanism which alleviates soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. The experiment was conducted to assess the root length density and root diameter of the corn (Zea mays L.) crop as a function of bulk density and water stress, characterized by the soil density (1.2; 1.4, and 1.6 g cm -3), and two levels of the water content, approximately (70 and 90% field capacity). The statistical design adopted was completely randomized design, with four replicates in a factorial pattern of (3 × 2). The PVC tubes were superimposed with an internal diameter of 20 cm with a height of 40 cm (the upper tube 20 cm, compacted and inferior tube 10 cm), the hardpan with different levels of soil compaction were located between 20 and 30 cm of the depth of the pot. Results showed that: the main effects of subsoil mechanical impedance were observed on the top layer indicating that the plants had to penetrate beyond the favorable soil conditions before root growth was affected from 3.16; 2.41 to 1.37 cm cm -3 (P<0.005). There was a significant difference at the hardpan layer for the two levels of water and 90% field capacity reduced the root growth from 0.91 to 0.60 cm cm -3 (P<0.005). The root length density and root diameter were affected by increasing soil bulk density from 1.2 to 1.6 g cm -3 which caused penetration resistance to increase to 1.4 MPa. Soil water content of 70% field capacity furnished better root growth in all the layers studied. The increase in root length density resulted in increased root volume. It can also be concluded that the effect of soil compaction impaired the root diameter mostly at the hardpan layer. Soil temperature had detrimental effect on the root growth mostly with higher bulk densities.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

采用小区试验研究了不同灌溉方式对津春4号黄瓜根系特性与产量的影响。结果表明,不同灌水方式之间黄瓜根系的特征值差异达到显著水平,前期交替沟灌结果期常规沟灌处理单株根条数、根长、根体积、根冠比均高于其余五种处理,根系伤流量为19.86 mg/min,根系活力高达0.55 mg/(g.h)。灌水方式对黄瓜单果重的影响不大,前期交替沟灌结果期常规沟灌处理的单株产量显著高于常规沟灌。因此,前期交替沟灌结果期常规沟灌有利于黄瓜根系的发育与产量的提高。

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soybean (Glycine max (L.) Merrill) is known to have a high ability as a potassium extractor, and different cultivars show different potassium requirements. An experiment was run to study the potassium nutrition of soybean as related to plant characteristics. Six soybean cultivars (FT-2, Bossier, IAC-11, IAC-17, IAC-18 and IAC-19) were grown in 6 kg pots filled with the topsoil of a Dark Red Latosol (sandy loam), either with and without K fertilization. The plants were harvested 70 days after emergence. Soybean response to potassium was not related to growth habit or group of maturation. There was a different response to K. The cultivars IAC-18 and FT-2 were less tolerant to K deficiency. Potassium deficiency in the leaves was not related to top dry matter production. With K fertilization soybean plants showed small root volume and higher ratio canopy/root. With high K in soil, all of the cultivars showed higher nodulation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Apex and basal cuttings of Lamiaceae plants (Mentha crispa L., Mentha piperita L. and Salvia officinalis L.) were submitted to rooting assay. The effects of water, H3BO3, KH2PO4, ZnSO 4 and KNO3 solutions on the formation of adventitious roots were studied in greenhouse conditions. The root morphology parameters were determined after the rooting processes. Salvia officinalis did not produce adventitious roots under the experimental conditions. Apex or basal cuttings showed similar rooting development. The root volume and length were more influencied by KNO3 and H3BO3 solutions than diameter and root surface area.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Genética e Melhoramento de Plantas) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Horticultura) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Produção Vegetal) - FCAV

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Pós-graduação em Agronomia (Irrigação e Drenagem) - FCA

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Con la finalidad de asegurar la adaptación en invernadero de plantas de Agave americana var. oaxacensis obtenidas in vitro, se evaluó el efecto de sustratos y dosis de fertirriego en la aclimatización y crecimiento de 180 plantas. Este trabajo se realizó en un invernadero del Instituto Tecnológico del Valle de Oaxaca, México, a principios de 2012. Se utilizaron plantas recién salidas del laboratorio. El experimento se estableció según el diseño completamente al azar con arreglo factorial 2 (sustratos: arena y perlita) x 5 (fertilización: 1, 25, 50, 75 y 100%). La unidad experimental fue una planta en un recipiente de plástico de 150 cm3 con 18 repeticiones. La fertilización se basó en la solución universal de Steiner y diariamente cada planta recibió a nivel de sustrato 10 mL durante 12 semanas. Se evaluó el crecimiento en hojas, tallo y raíz, realizando análisis de varianza y prueba de medias (Tukey, α = 0,05). Todas las plantas se adaptaron, pero aquellas plantas establecidas en perlita lograron los mejores crecimientos en área foliar, volumen de raíz, peso fresco total, materia seca de raíz y total de planta. El tamaño de las plantas al término de su aclimatación estuvo en relación con la cantidad de nutrimentos de la solución nutritiva.