912 resultados para Root Diameter


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Negative effects of soil compaction have been recognized as one of the problems restricting the root system and consequently impairing yields, especially in the Southern Coastal Plain of the USA. Simulations of the root restricting layers in green house studies are necessary for the development of mechanism which alleviates soil compaction problems in these soils. The selection of three distinct bulk densities based on the standard proctor test is also an important factor to determine which bulk density restricts the root layer. The experiment was conducted to assess the root length density and root diameter of the corn (Zea mays L.) crop as a function of bulk density and water stress, characterized by the soil density (1.2; 1.4, and 1.6 g cm -3), and two levels of the water content, approximately (70 and 90% field capacity). The statistical design adopted was completely randomized design, with four replicates in a factorial pattern of (3 × 2). The PVC tubes were superimposed with an internal diameter of 20 cm with a height of 40 cm (the upper tube 20 cm, compacted and inferior tube 10 cm), the hardpan with different levels of soil compaction were located between 20 and 30 cm of the depth of the pot. Results showed that: the main effects of subsoil mechanical impedance were observed on the top layer indicating that the plants had to penetrate beyond the favorable soil conditions before root growth was affected from 3.16; 2.41 to 1.37 cm cm -3 (P<0.005). There was a significant difference at the hardpan layer for the two levels of water and 90% field capacity reduced the root growth from 0.91 to 0.60 cm cm -3 (P<0.005). The root length density and root diameter were affected by increasing soil bulk density from 1.2 to 1.6 g cm -3 which caused penetration resistance to increase to 1.4 MPa. Soil water content of 70% field capacity furnished better root growth in all the layers studied. The increase in root length density resulted in increased root volume. It can also be concluded that the effect of soil compaction impaired the root diameter mostly at the hardpan layer. Soil temperature had detrimental effect on the root growth mostly with higher bulk densities.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The deleterious effects of both Mn deficiency and excess on the development of plants have been evaluated with regard to aspects of shoot anatomy, ultrastructure and biochemistry, focusing mainly on the manifestation of visual symptoms. However, there is little information in the literature on changes in the root system in response to Mn supply. The objective of this study was to evaluate the effects of Mn doses (0.5, 2.0 and 200.0 μmol L-1) in a nutrient solution on the anatomy of leaves and roots of the Glycine max (L.) cultivars Santa Rosa, IAC-15 and IAC-Foscarin 31. Visual deficiency symptoms were first observed in Santa Rosa and IAC-15, which were also the only cultivars where Mn-toxicity symptoms were observed. Only in IAC-15, a high Mn supply led to root diameter thickening, but without alteration in cells of the bark, epidermis, exodermis and endodermis. The degree of disorganization of the xylem vessels, in particular the metaxylem, differed in the cultivars. Quantity and shape of the palisade parenchyma cells were influenced by both Mn deficiency and toxicity. A reduction in the number of chloroplasts was observed in the three Mn-deficient genotypes. The anatomical alterations in IAC-15 due to nutritional stress were greater, as expressed in extensive root cell cytoplasm disorganization and increased vacuolation at high Mn doses. The degree of changes in the anatomical and ultrastructural organization of roots and leaves of the soybean genotypes studied differed, suggesting the existence of tolerance mechanisms to different intensities of Mn deficiency or excess.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The objective of this work was to evaluate the root system distribution and the yield of 'Conilon' coffee (Coffea canephora) propagated by seeds or cuttings. The experiment was carried out with 2x1 m spacing, in an Oxisol with sandy clay loam texture. A randomized complete block design was used, following a 2x9x6 factorial arrangement, with two propagation methods (seeds and cuttings), nine sampling spacings (0.15, 0.30, 0.45, 0.60, 0.75, and 0.90 m between rows, and 0.15, 0.30, and 0.45 between plants within rows), six soil depths (0.10-0.20, 0.20-0.30, 0.30-0.40, 0.40-0.50, and 0.50-0.60 m), and six replicates. Soil cores (27 cm3) with roots were taken from 12 experimental units, 146 months after planting. The surface area of the root system and root diameter, length, and volume were assessed for 13 years and, then, correlated with grain yield. The highest fine root concentration occurred at the superficial soil layers. The variables used to characterize the root system did not differ between propagation methods. Moreover, no differences were observed for net photosynthetic CO2 assimilation rate, stomatal conductance, internal CO2 concentrations, and instantaneous water-use efficiency in the leaves. Cutting-propagated plants were more productive than seed-propagated ones.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

We examined root morphological and functional differences caused by restrictions imposed to vertical growth in the root system of holm oak (Quercus ilex L.) seedlings to assess the consequences of using nursery containers in the development of a confined root system for this species. Thus, root morphological, topological and functional parameters, including hydraulic conductance per leaf unit surface area (K $_{\rm RL})$, were investigated in one-year seedlings cultivated in three PVC tubes differing in length (20, 60 and 100 cm). Longer tubes showed greater projected root area, root volume, total and fine root lengths, specific root length (SRL) and K$_{\rm RL}$ values than did shorter tubes. On the other hand, the length of coarse roots (diameter > 4.5 mm) and the average root diameter were greater in shorter tubes. The strong positive correlation found between K$_{\rm RL}$ and SRL (r=+0.69; P<0.001) indicated that root thickness was inversely related to water flow through the root system. We concluded that root systems developed in longer tubes are more efficient for plant water uptake and, therefore, changes in root pattern produced in standard forest containers (i.e. about 20 cm length) may in fact prevent a proper establishment of the holm oak in the field, particularly in xeric environments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Aqueous extracts of several plant species have shown promising in controlling root-knot nematode, Meloidogyne incognita (Kofoid & White), one of the most limiting agents for carrot cultivation. The current study evaluated the effect of aqueous extracts from seven botanical species applied to 40, 50, 60, 70 and 80 days after sowing 'Nantes' carrots in soil infested with root-knot nematode. Three other treatments included cassava wastewater, distilled water (control), which were applied in the same periods of the extracts application, in addition to carbofuran 50G (80Kg/ha), which was applied once at 60 days after carrot sowing. Evaluations were performed at 90 days after inoculation to determine shoot and root fresh weight, as well as the diameter and the length of principal roots and the number of galls on primary and secondary roots. Plants treated with cassava wastewater, extracts of Ricinus communis L. seeds, Crotalaria juncea L. seeds, R. communis leaves + branches + fruits, Chenopodium ambrosioides L. leaves + branches + inflorescences and Azadirachta indica A. Juss. seeds showed the highest rates of total weight (root + shoot) and shoot weight. The extract of R. communis leaves + branches + fruits provides the highest total root weight and principal root diameter. Cassava wastewater and extracts of R. communis seeds provided the highest principal root weight. The extract of R. communis seeds and cassava wastewater can be considered promising for the alternative control of M. incognita.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Root characteristics of seedlings of five different barley genotypes were analysed in 2D using gel chambers, and in 3D using soil sacs that were destructively harvested and pots of soil that were assessed non-invasively using X-ray microtomography. After 5 days, Chime produced the greatest number of root axes (similar to 6) and Mehola significantly less (similar to 4) in all growing methods. Total root length was longest in GSH01915 and shortest in Mehola for all methods, but both total length and average root diameter were significantly larger for plants grown in gel chambers than those grown in soil. The ranking of particular growth traits (root number, root angular spread) of plants grown in gel plates, soil sacs and X-ray pots was similar, but plants grown in the gel chambers had a different order of ranking for root length to the soil-grown plants. Analysis of angles in soil-grown plants showed that Tadmore had the most even spread of individual roots and Chime had a propensity for non-uniform distribution and root clumping. The roots of Mehola were less well spread than the barley cultivars supporting the suggestion that wild and landrace barleys tend to have a narrower angular spread than modern cultivars. The three dimensional analysis of root systems carried out in this study provides insights into the limitations of screening methods for root traits and useful data for modelling root architecture.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Most modern wheat cultivars contain major dwarfing genes, but their effects on root growth are unclear. Near-isogenic lines (NILs) containing Rht-B1b, Rht-D1b, Rht-B1c, Rht8c, Rht-D1c, and Rht12 were used to characterize the effects of semi-dwarfing and dwarfing alleles on root growth of 'Mercia' and 'Maris Widgeon' wheat cultivars. Wheat seedlings were grown in gel chambers, soil-filled columns, and in the field. Roots were extracted and length and dry mass measured. No significant differences in root length were found between semi-dwarfing lines and the control lines in any experiment, nor was there a significant difference between the root lengths of the two cultivars grown in the field. Total root length of the dwarf lines (Rht-B1c, Rht-D1c, and Rht12) was significantly different from that of the control although the effect was dependent on the experimental methodology; in gel chambers root length of dwarfing lines was increased by; 40% while in both soil media it was decreased (by 24-33%). Root dry mass was 22-30% of the total dry mass in the soil-filled column and field experiments. Root length increased proportionally with grain mass, which varied between NILs, so grain mass was a covariate for the analysis of variance. Although total root length was altered by dwarf lines, root architecture (average root diameter, lateral root: total root ratio) was not affected by reduced height alleles. A direct effect of dwarfing alleles on root growth during seedling establishment, rather than a secondary partitioning effect, was suggested by the present experiments.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Toxic levels of Al and low availability of Ca have been shown to decrease root growth, which can also be affected by P availability. In the current experiment, initial plant growth and nutrition of cotton (Gossypium hirsutum var. Latifolia) were studied as related to its root growth in response to phosphorus and lime application. The experiment was conducted in Botucatu, Sao Paulo, Brazil, in pots containing a Dark Red Latosol (Acrortox, 20% clay, 72% sand). Lime was applied at 0.56, 1.12 and 1.68 g kg -1 and phosphorus was applied at 50, 100 and 150 mg kg -1. Two cotton (cv. IAC 22) plants were grown per pot for up to 42 days after plant emergence. There was no effect of liming on shoot dry weight, root dry matter yield, root surface and length, but root diameter was decreased with the increase in soil Ca. Shoot dry weight, as well as root length, surface and dry weight were increased with soil P levels up to 83 mg kg -1. Phosphorus concentration in the shoots was increased from 1.6 to 3.0 g kg -1 when soil P was increased from 14 to 34 mg kg -1. No further increases in P concentration were observed with higher P rates. The shoot/root ratio was also increased with P application as well as the amount of nutrients absorbed per unit of root surface. In low soil P soils the transport of the nutrient to the cotton root surface limits P uptake. In this case an increase in root growth rate due to P fertilisation does not compensate for the low P diffusion in the soil.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It is presented two study cases about the approach in root analysis at field and laboratory conditions based on digital image analysis. Grapevine (Vitis vinifera L.) and date palm (Phoenix dactylifera L.) root systems were analyzed by both the monolith and trench wall method aided by digital image analysis. Correlation between root parameters and their fractional distribution over the soil profile were obtained, as well as the root diameter estimation. Results have shown the feasibility of digital image analysis for evaluation of root distribution.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND AND OBJECTIVE: The standard surgical repair of disease of the aortic valve and the ascending aorta has been combined replacement, which includes the disadvantage of inserting a mechanical valve. We have investigated an individualized approach which preserves the native valve. PATIENTS AND METHODS: Between October 1995 and October 1997, a consecutive total of 101 patients (72 men, 29 women, aged 21-83 years) underwent operations for disease of the ascending aorta: aortic dissection type A in 34 patients, aneurysmal dilatation in 67. Dilatation of the aortic arch was associated with aortic regurgitation in 58 patients. There were 11 patients with aortic valve stenosis or previously implanted aortic valve prosthesis among a total of 46 whose aortic valve was replaced (group II). Supracommissural aortic replacement with a Dacron tube was performed in 16 patients (group I) with normal valve cusps and an aortic root diameter < 3.5 cm. In 28 patients with an aortic root diameter of 3.5-5.0 cm the aortic root was remodelled (group III). Resuspension of the native aortic valve was undertaken in 11 patients with aortic root dilatation of > 5.0 cm (group IV). RESULTS: Operative intervention was electively performed in 72 patients, without any death. Of 29 patients operated as an emergency for acute type A dissection four died (14%). In 55 of the 58 patients with aortic regurgitation in proved possible to preserve native aortic valve (95%). In the early postoperative phase and after an average follow-up time of 11.8 months, transthoracic echocardiography demonstrated good aortic valve function, except in one patient each of groups III and IV who developed aortic regurgitation grades I or II. CONCLUSION: The described individualized approach makes it possible to preserve the native aortic valve in most patients with aortic regurgitation, at a low risk. Follow-up observations so far indicate good results of the reconstruction.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Although plastic root-foraging responses are thought to be adaptive, as they may optimize nutrient capture of plants, this has rarely been tested. We investigated whether nutrient-foraging responses are adaptive, and whether they pre-adapt alien species to become natural-area invaders. We grew 12 pairs of congeneric species (i.e., 24 species) native to Europe in heterogeneous and homogeneous nutrient environments, and compared their foraging responses and performance. One species in each pair is a USA natural-area invader, and the other one is not. Within species, individuals with strong foraging responses, measured as plasticity in root diameter and specific root length, had a higher biomass. Among species, the ones with strong foraging responses, measured as plasticity in root length and root biomass, had a higher biomass. Our results therefore suggest that root foraging is an adaptive trait. Invasive species showed significantly stronger root-foraging responses than non-invasive species when measured as root diameter. Biomass accumulation was decreased in the heterogeneous vs. the homogeneous environment. In aboveground, but not belowground and total biomass, this decrease was smaller in invasive than in non-invasive species. Our results show that strong plastic root-foraging responses are adaptive, and suggest that it might aid in pre-adapting species to becoming natural-area invaders.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Legume plants carefully control the extent of nodulation in response to rhizobial infection. To examine the mechanism underlying this process we conducted a detailed analysis of the Lotus japonicus hypernodulating mutants, har1-1, 2 and 3 that define a new locus, HYPERNODULATION ABERRANT ROOT FORMATION (Har1), involved in root and symbiotic development. Mutations in the Har1 locus alter root architecture by inhibiting root elongation, diminishing root diameter and stimulating lateral root initiation. At the cellular level these developmental alterations are associated with changes in the position and duration of root cell growth and result in a premature differentiation of har1-1 mutant root. No significant differences between har1-1 mutant and wild-type plants were detected with respect to root growth responses to 1-aminocyclopropane1-carboxylic acid, the immediate precursor of ethylene, and auxin; however, cytokinin in the presence of AVG (aminoetoxyvinylglycine) was found to stimulate root elongation of the har1-1 mutant but not the wild-type. After inoculation with Mesorhizobium loti, the har1 mutant lines display an unusual hypernodulation (HNR) response, characterized by unrestricted nodulation (hypernodulation), and a concomitant drastic inhibition of root and shoot growth. These observations implicate a role for the Har1 locus in both symbiotic and non-symbiotic development of L. japonicus, and suggest that regulatory processes controlling nodule organogenesis and nodule number are integrated in an overall mechanism governing root growth and development.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The competitive influence of the root system of the exotic grass Urochloa brizantha and the widespread forb Leonotis nepetifolia on the emergence, survival and early growth of the seedlings of eight tropical heliophilous herbaceous species, six early-successional woody species and five late-successional woody species from Brazil, grown in 3500-cm3 pots and in greenhouse without light restriction were assessed. The density of fine-root systems produced by the forb and the grass in pots were 6.8 cm cm-3 soil and 48.1 cm cm-3 soil, respectively. Seedlings survival of the heliophilous herbaceous, early- and late-successional woody species were 86%, 70% and 100% in presence of the forb root system and 12%, 14% and 100% in competition with grass root system, respectively. The competitive pressure applied by the grass root system on seedling growth of the heliophilous herbaceous, early- and late-successional woody species were 2.4, 1.9 and 1.4 times greater than the forb root system. Total root length of the heliophilous herbaceous, early- and late-successional woody species grown without competitors were 13, 33 and 5 times greater than in competition with forb, and were 66, 54 and 6 times greater than in competition with grass root system, respectively. The averages of fine-root diameter of plants grown without competitors were 209 microm for the heliophilous herbaceous, 281 microm for early-successional trees and 382 microm for late-successional trees. The root system of the forb did not avoid seedling establishment of most plant species, but the grass root system hampered more the establishment of heliophilous herbaceous and early-successional woody species than the seedling establishment of late-successional woody species. The different density of root systems produced in soil by the forb and the grass, and the distinct root traits (e.g. root diameter and root tissue density) of the early- and late-successional plant species can explain the differences in the establishment of seedlings of plant species belonging to different groups of tropical succession when exposed to below-ground competition.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cadmium (Cd) is a toxic heavy metal, which can cause severe damage to plant development. The aim of this work was to characterize ultrastructural changes induced by Cd in miniature tomato cultivar Micro-Tom (MT) mutants and their wild-type counterpart. Leaves of diageotropica (dgt) and Never ripe (Nr) tomato hormonal mutants and wild-type MT were analysed by light, scanning and transmission electron microscopy in order to characterize the structural changes caused by the exposure to 1 mM CdCl(2). The effect of Cd on leaf ultrastructure was observed most noticeably in the chloroplasts, which exhibited changes in organelle shape and internal organization, of the thylakoid membranes and stroma. Cd caused an increase in the intercellular spaces in Nr leaves, but a decrease in the intercellular spaces in dgt leaves, as well as a decrease in the size of mesophyll cells in the mutants. Roots of the tomato hormonal mutants, when analysed by light microscopy, exhibited alterations in root diameter and disintegration of the epidermis and the external layers of the cortex. A comparative analysis has allowed the identification of specific Cd-induced ultrastructural changes in wild-type tomato, the pattern of which was not always exhibited by the mutants. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aim: To evaluate whether the ventricular septal defect (VSD) size, along with the degree of preoperative growth impairment and age at repair, may influence postoperative growth, and if VSD size can be useful to identify children at risk for preoperative failure to thrive. Methods: Sixty-eight children submitted to VSD repair in a Brazilian tertiary-care institution were evaluated. Weight and height measurements were converted to Z-scores. Ventricular septal defect size was normalized by dividing it by the aortic root diameter (VSD/Ao ratio). Results: Twenty-six patients (38%) had significantly low weight-for-height, 10 patients (15%) had significantly low height-for-age and 13 patients (19%) had both conditions at repair. Catch-up growth occurred in 82% of patients for weight-for-age, in 75% of patients for height-for-age and in 89% of patients for weight-for-height. Weight-for-height Z-scores at surgery were significantly lower in patients who underwent repair before 9 months of age. The VSD/Ao ratio did not associate with any other data. On multivariate analysis, weight-for-age Z-scores and age at surgery were independent predictors of long-term weight and height respectively. Conclusion: The VSD/Ao ratio was not a good predictor of preoperative failure to thrive. Most patients had preoperative growth impairment and presented catch-up growth after repair. Preoperative growth status and age at surgery influenced long-term growth.