927 resultados para Roof-to-Wall Connections
Resumo:
Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. ^ The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated triaxial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. ^ The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing. ^
Resumo:
Damages during extreme wind events highlight the weaknesses of mechanical fasteners at the roof-to-wall connections in residential timber frame buildings. The allowable capacity of the metal fasteners is based on results of unidirectional component testing that do not simulate realistic tri-axial aerodynamic loading effects. The first objective of this research was to simulate hurricane effects and study hurricane-structure interaction at full-scale, facilitating better understanding of the combined impacts of wind, rain, and debris on inter-component connections at spatial and temporal scales. The second objective was to evaluate the performance of a non-intrusive roof-to-wall connection system using fiber reinforced polymer (FRP) materials and compare its load capacity to the capacity of an existing metal fastener under simulated aerodynamic loads. The Wall of Wind (WoW) testing performed using FRP connections on a one-story gable-roof timber structure instrumented with a variety of sensors, was used to create a database on aerodynamic and aero-hydrodynamic loading on roof-to-wall connections tested under several parameters: angles of attack, wind-turbulence content, internal pressure conditions, with and without effects of rain. Based on the aerodynamic loading results obtained from WoW tests, sets of three force components (tri-axial mean loads) were combined into a series of resultant mean forces, which were used to test the FRP and metal connections in the structures laboratory up to failure. A new component testing system and test protocol were developed for testing fasteners under simulated tri-axial loading as opposed to uni-axial loading. The tri-axial and uni-axial test results were compared for hurricane clips. Also, comparison was made between tri-axial load capacity of FRP and metal connections. The research findings demonstrate that the FRP connection is a viable option for use in timber roof-to-wall connection system. Findings also confirm that current testing methods of mechanical fasteners tend to overestimate the actual load capacities of a connector. Additionally, the research also contributes to the development a new testing protocol for fasteners using tri-axial simultaneous loads based on the aerodynamic database obtained from the WoW testing.
Resumo:
When steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through/dimpling failures or pull-out failures occur prematurely at their screwed connections. During extreme wind events such as storms and hurricanes, these localized failures then lead to severe damage to buildings and their contents. An investigation was therefore carried out to study the failure that occurs when the screw fastener pulls out of the steel battens, purlins, or girts. Both two-span cladding tests and small-scale tests were conducted using a range of commonly used screw fasteners and steel battens, purlins, and girts. Experimental results showed that the current design formula may not be suitable unless a reduced capacity factor of 0.4 is used. Therefore, an improved design formula has been developed for pull-out failures in steel cladding systems. The formula takes into account thickness and ultimate tensile strength of steel, along with thread diameter and the pitch of screw fasteners, in order to model the pull-out behavior more accurately. This paper presents the details of this experimental investigation and its results.
Resumo:
When crest-fixed thin steel roof cladding systems are subjected to wind uplift, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as storms and cyclones these localised failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens/purlins has increased considerably. This has made the pull-out failures more critical in the design of steel cladding systems. Recent research has developed a design formula for the static pull-out strength of steel cladding systems. However, the effects of fluctuating wind uplift loading that occurs during high wind events are not known. Therefore a series of constant amplitude cyclic tests has been undertaken on connections between steel battens made of different thicknesses and steel grades, and screw fasteners with varying diameter and pitch. This paper presents the details of these cyclic tests and the results.
Resumo:
When thin steel roof and wall cladding systems are subjected to wind uplift/suction forces, local pull-through or pull-out failures occur prematurely at their screwed connections. During high wind events such as stom1s and cyclones, these localized failures then lead to severe damage to buildings and their contents. In recent times, the use of thin steel battens, purlins and girts has increased considerably, which has made the pull-out failures more critical in the design of steel cladding systems. An experimental investigation was therefore carried out to study the pull-out failure using both static and cyclic tests for a range of commonly used screw fasteners and steel battens, purlins and girts. This paper presents the details ofthis experimental investigation and its results.
Resumo:
The speed at which target pictures are named increases monotonically as a function of prior retrieval of other exemplars of the same semantic category and is unaffected by the number of intervening items. This cumulative semantic interference effect is generally attributed to three mechanisms: shared feature activation, priming and lexical-level selection. However, at least two additional mechanisms have been proposed: (1) a 'booster' to amplify lexical-level activation and (2) retrieval-induced forgetting (RIF). In a perfusion functional Magnetic Resonance Imaging (fMRI) experiment, we tested hypotheses concerning the involvement of all five mechanisms. Our results demonstrate that the cumulative interference effect is associated with perfusion signal changes in the left perirhinal and middle temporal cortices that increase monotonically according to the ordinal position of exemplars being named. The left inferior frontal gyrus (LIFG) also showed significant perfusion signal changes across ordinal presentations; however, these responses did not conform to a monotonically increasing function. None of the cerebral regions linked with RIF in prior neuroimaging and modelling studies showed significant effects. This might be due to methodological differences between the RIF paradigm and continuous naming as the latter does not involve practicing particular information. We interpret the results as indicating priming of shared features and lexical-level selection mechanisms contribute to the cumulative interference effect, while adding noise to a booster mechanism could account for the pattern of responses observed in the LIFG.
Resumo:
Most network operators have considered reducing Label Switched Routers (LSR) label spaces (i.e. the number of labels that can be used) as a means of simplifying management of underlaying Virtual Private Networks (VPNs) and, hence, reducing operational expenditure (OPEX). This letter discusses the problem of reducing the label spaces in Multiprotocol Label Switched (MPLS) networks using label merging - better known as MultiPoint-to-Point (MP2P) connections. Because of its origins in IP, MP2P connections have been considered to have tree- shapes with Label Switched Paths (LSP) as branches. Due to this fact, previous works by many authors affirm that the problem of minimizing the label space using MP2P in MPLS - the Merging Problem - cannot be solved optimally with a polynomial algorithm (NP-complete), since it involves a hard- decision problem. However, in this letter, the Merging Problem is analyzed, from the perspective of MPLS, and it is deduced that tree-shapes in MP2P connections are irrelevant. By overriding this tree-shape consideration, it is possible to perform label merging in polynomial time. Based on how MPLS signaling works, this letter proposes an algorithm to compute the minimum number of labels using label merging: the Full Label Merging algorithm. As conclusion, we reclassify the Merging Problem as Polynomial-solvable, instead of NP-complete. In addition, simulation experiments confirm that without the tree-branch selection problem, more labels can be reduced
Resumo:
Growing ivy around buildings has benefits. However, ivy potentially damages buildings which limit its use. Options for preventing ivy attachment were investigated to provide ivy management alternatives. Indoor and outdoor experiments were conducted, where metals (Cu, Zn) and anti-graffiti paints were applied to model wall panels. Metal treatments, in both indoor and outdoor experiments, fully prevented ivy attachment. For Hedera helix, silane-based anti-graffiti paint prevented attachment in the laboratory and required under half the peak detachment force necessary to detach the control in the outdoor experiment. In conclusion, metals and silane-based paint are management possibilities for ivy attachment around buildings.