986 resultados para Rodents--Control--Biological control.
Resumo:
How does fire affect the plant and animal community of the boreal forest? This study attempted to examine the changes in plant composition and productivity, and small mammal demography brought about by fire in the northern boreal environment at Chick Lake, N.W.T. (65053fN, 128°14,W). Two 5*6 ha plots measuring 375m x 150m were selected for study during the summers of 1973 and 197^. One had been unburned for 120 years, the other was part of a fire which burned in the spring of 1969. Grids of 15m x 15m were established in each plot and meter square quadrats taken at each of the 250 grid intersections in order to determine plant composition and density. Aerial primary production was assessed by clipping and drying 80 samples of terminal new production for each species under investigation. Small mammal populations were sampled by placing a Sherman live trap at each grid intersection for ten days in every month. The two plots were similar in plant species composition which suggested that most regrowth in the burned area was from rootstocks which survived the fire. The plant data were submitted to a cluster analysis that revealed nine separate species associations, six of which occured in the burned area and eight of which occured in the control. These were subsequently treated as habitats for purposes of comparison with small mammal distributions. The burned area showed a greater productivity in flowers and fruits although total productivity in the control area was higher due to a large contribution from the non-vascular component. Maximum aerial productivity as dry wieght was measured at 157.1 g/m and 207.8 g/m for the burn and control respectively. Microtus pennsylvanicus and Clethrionomys rutilus were the two most common small mammals encountered; Microtus xanthognathus, Synaptomys borealis, and Phenacomys intermedius also occured in the area. Populations of M. pennsylvanicus and C. rutilus were high during the summer of 1973; however, M. pennsylvanicus was rare on the control but abundant on the burn, while C. rutilus was rare on the burn but abundant in the control. During the summer of 197^ populations declined, with the result that few voles of any species were caught in the burn while equal numbers of the two species were caught in the control. During the summer of 1973 M. pennsylvanicus showed a positive association to the most productive habitat type in the burn which was avoided by C. rutilus. In the control £• rutilus showed a similar positive association to the most productive habitat type which was avoided by M. pennsylvanicus. In all cases for the high population year of 1973# the two species never overlapped in habitat preference. When populations declined in 197^f "both species showed a strong association for the most productive habitat in the control. This would suggest that during a high population year, an abundant species can exclude competitors from a chosen habitat, but that this dominance decreases as population levels decrease. It is possible that M. pennsylvanicus is a more efficient competitor in a recently burned environment, while C. rutilus assumes this role once non-vascular regrowth becomes extensive.
Resumo:
Hantaviruses belong to the Bunyaviridae family, which consists of vector-borne viruses. These viruses can provoke two infection types: hemorrhagic fever with renal syndrome (HFRS) - which occurs in the Old World - and hantavirus cardiopulmonary syndrome (HCPS) - an emergent zoonosis that can be found in many countries of the western hemisphere. Rodents are hantavirus reservoirs and each species seems to host a different virus type. Humans acquire the infection by inhaling contaminated aerosol particles eliminated by infected animals. The factors involved in the emergence of hantavirus infections in the human population include ecological modifications and changes in human activities. The most important risk factor is contact between man and rodents, as a result of agricultural, forestry or military activities. Rodent control remains the primary strategy for preventing hantavirus diseases, including via health education and hygienic habits.
Resumo:
Fungal entomopathogens have been used more frequently than other types of pathogens for classical biological control. Among 136 programs using different groups of arthropod pathogens, 49.3% have introduced fungal pathogens (including both the traditional fungi and microsporidia). The most commonly introduced species was Metarhizium anisopliae (Metschnikoff) Sorokin, with 13 introductions, followed by Entomophaga maimaiga Humber, Shimazu & Soper, which was released seven times. The majority of introduction programs have focused on controlling invasive species of insects or mites (70.7%) rather than on native hosts (29.4%). Almost half of the introductions of traditional fungi targeted species of Hemiptera and 75% of the microsporidia introduced have been introduced against lepidopteran species. The United States was the country where most introductions of fungi took place (n = 24). From 1993 to 2007, no arthropod pathogens were released in the US due to the rigorous regulatory structure, but in 2008 two species of microsporidia were introduced against the gypsy moth, Lymantria dispar (L.). Establishment of entomopathogenic fungi in programs introducing traditional fungi was 32.1% and establishment was 50.0% for programs introducing microsporidia. In some programs, releases have resulted in permanent successful establishment with no non-target effects. In summary, classical biological control using fungal entomopathogens can provide a successful and environmentally friendly avenue for controlling arthropod pests, including the increasing numbers of invasive non-native species.
Resumo:
1. Establishing biological control agents in the field is a major step in any classical biocontrol programme, yet there are few general guidelines to help the practitioner decide what factors might enhance the establishment of such agents. 2. A stochastic dynamic programming (SDP) approach, linked to a metapopulation model, was used to find optimal release strategies (number and size of releases), given constraints on time and the number of biocontrol agents available. By modelling within a decision-making framework we derived rules of thumb that will enable biocontrol workers to choose between management options, depending on the current state of the system. 3. When there are few well-established sites, making a few large releases is the optimal strategy. For other states of the system, the optimal strategy ranges from a few large releases, through a mixed strategy (a variety of release sizes), to many small releases, as the probability of establishment of smaller inocula increases. 4. Given that the probability of establishment is rarely a known entity, we also strongly recommend a mixed strategy in the early stages of a release programme, to accelerate learning and improve the chances of finding the optimal approach.
Resumo:
The story of the spread of the European rabbit across Australia, and of the two viruses used to control it, is an interesting way to look at some of the issues associated with biological control. What can be learned from the way this system developed, and what has been learned, or not learned, from the mistakes made? Here, we look at these events and examine what insights can be gained from this history.
Resumo:
Field trials and laboratory bioassays were undertaken to compare the performance and efficacy (mortality of diamondback moth larvae) of insecticides applied to cabbages with three high volume hydraulic knapsack sprayers (NS-16, PB-20 and Selecta 12V) and a controlled droplet application (CDA) sprayer. In field experiments, the high volume knapsack sprayers (application rate 500-600 L ha(-1)) provided better spray coverage on the upper and lower surfaces of inner leaves, the upper surfaces of middle and outer leaves, and greater biological efficacy than the CDA sprayer (application rate 20similar to40 L ha(-1)). The PB-20 provided better spray coverage on the upper surface of middle leaves and both surfaces of outer leaves when compared with the Selecta 12V. However, its biological efficacy in the field was not significantly different from that of the other high volume sprayers. Increasing the application rate from 20 to 40 L ha(-1) for the CDA sprayer significantly increased droplet density but had no impact on test insect mortality. Laboratory evaluations of biological efficacy yielded higher estimates than field evaluations and there was no significant difference between the performance of the PB-20 and the CDA sprayer. Significant positive relationships were detected between insect mortality and droplet density deposited for both the PB-20 and the CDA sprayers.
Resumo:
Saprophytic bacteria, yeasts and filamentous fungi were isolated from Geraldton waxflower flowers and screened to identify potential antagonism towards Botrytis cinerea. Isolates from other sources (e.g. avocado) were also tested. Isolates were initially screened in vitro for inhibition of B. cinerea conidial germination, germ tube elongation and mycelial growth. The most antagonistic bacteria, yeasts and fungi were selected for further testing on detached waxflower flowers. Conidia of the pathogen were mixed with conidia or cells of the selected antagonists, co-inoculated onto waxflower flowers, and the flowers were sealed in glass jars and incubated at 20 degreesC. The number of days required for the pathogen to cause flower abscission was determined. The most antagonistic bacterial isolate, Pseudomonas sp. 677, significantly reduced conidial germination and retarded germ tube elongation of B. cinerea. None of the yeast or fungal isolates tested was found to significantly reduce conidial germination or retard germ tube elongation, but several significantly inhibited growth of B. cinerea. Fusarium sp., Epicoccum sp. and Trichoderma spp. were the most antagonistic of these isolates. Of the isolates tested on waxflower, Pseudomonas sp. 677 was highly antagonistic towards B. cinerea and delayed waxflower abscission by about 3 days. Trichoderma harzianum also significantly delayed flower abscission. However, as with most of the fungal antagonists used, inoculation of waxflower flowers with this isolate resulted in unsightly mycelial growth.
Resumo:
The ability of 2 freshwater fishes, eastern rainbow fish Melanotaenia splendida splendida and fly-specked hardyhead Craterocephalus stercusmuscarum stercusmuscarum. native to North Queensland to prey on immature Aedes aegypti was evaluated under laboratory conditions. The predation efficiency of the 2 species was compared to the exotic guppy, Poecilia reticulata, which is commonly used as a biological control agent of mosquito larvae. Of the 3 fish species tested, M. s. splendida was shown to be the most promising agent for the biological control of Ae. aegypti that breed in wells. Melanotaenia s. splendida consumed significantly greater numbers of immature Ae. aegypti than P. reticulata, irrespective of developmental stage or light conditions. Unlike C. s. stercusmuscarum, M, s. splendida could be handled, transported, and kept in captivity for extended periods with negligible mortality. However, M. s. splendida was also an efficient predator of Litoria caerulea tadpoles, a species of native frog found in wells during the dry season. This result may limit the usefulness of M. s. splendida as a biological control agent of well-breeding Ae. aegypti and suggests that predacious copepods, Mesocyclops spp., are more suitable. However, the use of M. s. splendida as a mosquito control agent in containers that are unlikely to support frog populations (e.g., aquaculture tanks and drinking troughs) should be given serious consideration.
Resumo:
The activated sludge comprises a complex microbiological community. The structure (what types of microorganisms are present) and function (what can the organisms do and at what rates) of this community are determined by external physico -chemical features and by the influent to the sewage treatment plant. The external features we can manipulate but rarely the influent. Conventional control and operational strategies optimise activated sludge processes more as a chemical system than as a biological one. While optimising the process in a short time period, these strategies may deteriorate the long-term performance of the process due to their potentially adverse impact on the microbial properties. Through briefly reviewing the evidence available in the literature that plant design and operation affect both the structure and function of the microbial community in activated sludge, we propose to add sludge population optimisation as a new dimension to the control of biological wastewater treatment systems. We stress that optimising the microbial community structure and property should be an explicit aim for the design and operation of a treatment plant. The major limitations to sludge population optimisation revolve around inadequate microbiological data, specifically community structure, function and kinetic data. However, molecular microbiological methods that strive to provide that data are being developed rapidly. The combination of these methods with the conventional approaches for kinetic study is briefly discussed. The most pressing research questions pertaining to sludge population optimisation are outlined. (C) 2002 Elsevier Science Ltd. All rights reserved.
Resumo:
Third-instar nymphs of the Australian assassin bug, Pristhesancus plagipennis (Walker), were released into cotton plots at two release densities and two crop growth stages to test their biological control potential. Release rates of 2 and 5 nymphs per metre row resulted in field populations of 0.51 and 1.38 nymphs per metre row, respectively, indicating that over 70% of nymphs died or emigrated within two weeks of release. Effective release rates of 1.38 nymphs per metre row reduced the number of Helicoverpa spp. larvae in the plots for a 7-week period. Crop yields were significantly greater in the plots to which P. plagipennis nymphs were released, with the effective release rate of 1.38 nymphs per metre row providing equivalent yields as insecticide treated plots. The data suggest that P. plagipennis has the capacity to reduce Helicoverpa spp. larvae densities in cotton crops when augmented through inundative release.
Resumo:
ABSTRACT Pathogenic fungi cause skin darkening and peach quality depreciation in post harvest. Therefore, alternative techniques to chemical treatment are necessary in order to reduce risks to human health. The aim of this study was to evaluate the effect of the application of Trichoderma harzianum in association with different fungicides applied before harvest to 'Eldorado' peaches for brown rot control and other quality parameters during storage. The treatments consisted of five preharvest fungicide applications (control, captan, iprodione, iminoctadine and tebuconazole) associated with postharvest application of T. harzianum, after cold storage (with and without application), in three evaluation times (zero, two and four days at 20 °C), resulting in a 5x2x3 factorial design. The application of T. harzianum only brought benefits to the control of brown rot when combined with the fungicide captan, at zero day shelf life. After two days, there was a greater skin darkening in peaches treated with T. harzianum compared with peaches without the treatment, except for peaches treated with the fungicide iprodione and T. harzianum The application of T. harzianum during postharvest showed no benefits for the control of brown rot, however, the association with fungicides reduced the incidence of Rhizopus stolonifer during the shelf life.