981 resultados para Rocks, Carbonate
Resumo:
The rock sequence of the Tertiary Beda Formation of S. W. concession 59 and 59F block in Sirte Basin of Libya has been subdivided into twelve platformal carbonate microfacies. These microfacies are dominated by muddy carbonates, such as skeletal mudstones, wackestones, and packstones with dolomites and anhydrite. Rock textures, faunal assemblages and sedimentary structures suggest shallow, clear, warm waters and low to moderate energy conditions within the depositional shelf environment. The Beda Formation represents a shallowing-upward sequence typical of lagoonal and tidal flat environments marked at the top by sabkha and brackish-water sediments. Microfossils include benthonic foraminifera, such as miliolids, Nummulites, - oerculina and other smaller benthonics, in addition to dasycladacean algae, ostracods, molluscs, echinoderms, bryozoans and charophytes. Fecal pellets and pelloids, along with the biotic allochems, contributed greatly to the composition of the various microfacies. Dolomite, where present, is finely crystalline and an early replacement product. Anhydrite occurs as nodular, chickenwire and massive textures indicating supratidal sabkha deposition. Compaction, micr it i zat ion , dolomit izat ion , recrystallization, cementation, and dissolution resulted in alteration and obliteration of primary sedimentary structures of the Beda Formation microfacies. The study area is located in the Gerad Trough which developed as a NE-SW trending extensional graben. The Gerad trough was characterized by deep-shallow water conditions throughout the deposition of the Beda Formation sediments. The study area is marked by several horsts and grabens; as a result of extent ional tectonism. The area was tectonically active throughout the Tertiary period. Primary porosity is intergranular and intragranular, and secondary processes are characterized by dissolution, intercrystalline, fracture and fenestral features. Diagenesis, through solution leaching and dolomitization, contributed greatly to porosity development. Reservoir traps of the Beda Formation are characterized by normal fault blocks and the general reservoir characteristics/properties appear to be facies controlled.
Resumo:
Geochemical examination of the rock matrix and cements from core material extracted from four oil wells within southwestern Ontario suggest various stages of diagenetic alteration and preservation of the Trenton Group carbonates. The geochemical compositions of Middle Ordovician (LMC) brachiopods reflect the physicochemical water conditions of the ambient depositional environment. The sediments appear to have been altered in the presence of mixed waters during burial in a relatively open diagenetic microenvironment. Conodont CAl determination suggests that the maturation levels of the Trenton Group carbonates are low and proceeded at temperatures of about 30 - 50°C within the shallow burial environment. The Trenton Group carbonates are characterized by two distinct stages of dolomitization which proceeded at elevated temperatures. Preexisting fracture patterns, and block faulting controlled the initial dolomitization of the precursor carbonate matrix. Dolomitization progressed In the presence of warm fluids (60 75°C) with physicochemical conditions characteristic of a progressively depleted basinal water. The matrix is mostly Idiotopic-S and Idiotopic-E dolomite, with Xenotopic-A dolomite dominating the matrix where fractures occur. The second stage of dolomitization involved hydrothermal basinal fluid(s) with temperatures of about 60 - 70°C. These are the postulated source for the saddle dolomite and blocky calcite cements occurring in pore space and fractures. Rock porosity was partly occluded by Idiotopic-E type dolomite. Late stage saddle dolomite, calcite, anhydrite, pyrite, marcasite and minor sphalerite and celestite cements effectively fill any remaining porosity within specific horizons. Based on cathode luminescence, precipitation of the different diagenetic phases probably proceeded in open diagenetic systems from chemically homogeneous fluids. Ultraviolet fluorescence of 11 the matrix and cements demonstrated that hydrocarbons were present during the earliest formation of saddle dolomite. Oxygen isotope values of -7.6 to -8.5 %0 (PDB), and carbon isotope values of - 0.5 and -3.0 %0 (PDB) from the latest stage dog-tooth calcite cement suggest that meteoric water was introduced into the system during their formation. This is estimated to have occurred at temperatures of about 25 - 40°C. Specific facies associations within the Trenton Group carbonates exhibit good hydrocarbon generating potential based on organic carbon preservation (1-3.5%). Thermal maturation and Lopatin burial-history evaluations suggest that hydrocarbons were generated within the Trenton Group carbonates some time after 300 Ma . Progressively depleted vanadium trends measured from hydrocarbon samples within southwestern Ontario suggests its potential use as a hydrocarbon migration indicator on local (within an oilfield) and on regional scales.
Resumo:
With the aim of radiocarbon dating Llora travertines, chemical and isotopic data of strearn water and present travertines have been analyzed. The purpose is to determine the radiocarbon activity of present travertines in order to assign an initial radiocarbon activity to the old ones. Applying this methodology we conclude that travertines are from Holocen age around 4.000 years BP
Resumo:
The Paleozoic materials of Massís de Begur are described from a stratigraphical point of view. We distinguish two units: the lower one, present phillites with carbonate layers of cambro-ordovician age. The upper one is composed by volcanic rocks, carbonate schists and black slates, bring from caradocian and ashgillian age
Resumo:
As rochas carbonáticas ocupam, numa visão global, um expressivo volume da crosta terrestre. De maneira geral, pode-se dizer que essas rochas estão presentes nas diversas unidades litoestatigráficas da Terra. Os reservatórios carbonáticos são reservas naturalmente fraturadas que exigem uma abordagem diferenciada na modelagem em programas de simulação numérica. Os modelos de dupla porosidade são descritos por funções de tranferências que modelam o fluxo de óleo entre matriz e fraturas. Em um reservatório carbonático naturalmente fraturado o sistema de fraturas é determinante no escoamento de fluidos dentro da reserva. Os maiores reservatórios carbonáticos do mundo estão situados no Oriente Médio e na América do Norte. As maiores reservas de óleo brasileiras encontradas neste tipo de reservatório estão localizadas nos campos do Pré-Sal. No Pré-Sal, um volume significativo de dióxido de carbono é produzido juntamente com o óleo. A disponibilidade de um volume consideravél de dióxido de carbono derivado da produção de óleo no Pré-Sal favorece a utilização dos processos de EOR (Enhanced Oil Recovery) por injeção de gás. O processo de injeção de dióxido de carbono vem sendo utilizado em uma grande quantidade de projetos pelo mundo. A afinidade existente entre o óleo e o dióxido de carbono causa uma frente miscível entre as duas fases causando inchamento e vaporização do óleo dentro do reservatório. Para o estudo, foi utilizado um modelo base de reservatório de dupla-porosidade, desenvolvido pela CMG para o 6° Projeto de Soluções Comparativas da SPE, que modela sistemas de fraturas e de matriz e a tranferência de massa fluida entre elas, características de reservatórios naturalmente fraturados. Foi feita uma análise da injeção de diferentes vazões de dióxido de carbono no modelo base e em modelos semelhantes, com aumento e redução de 5 e 0.5 pontos nas propriedades de porosidade e permeabilidade da matriz, respectivamente, tendo a produção de óleo como resultado. A injeção de 25 milhões de pés cúbicos por dia de CO2 foi a vazão que obteve a melhor fator de recuperação
Resumo:
Mode of access: Internet.
Resumo:
As rochas carbonáticas ocupam, numa visão global, um expressivo volume da crosta terrestre. De maneira geral, pode-se dizer que essas rochas estão presentes nas diversas unidades litoestatigráficas da Terra. Os reservatórios carbonáticos são reservas naturalmente fraturadas que exigem uma abordagem diferenciada na modelagem em programas de simulação numérica. Os modelos de dupla porosidade são descritos por funções de tranferências que modelam o fluxo de óleo entre matriz e fraturas. Em um reservatório carbonático naturalmente fraturado o sistema de fraturas é determinante no escoamento de fluidos dentro da reserva. Os maiores reservatórios carbonáticos do mundo estão situados no Oriente Médio e na América do Norte. As maiores reservas de óleo brasileiras encontradas neste tipo de reservatório estão localizadas nos campos do Pré-Sal. No Pré-Sal, um volume significativo de dióxido de carbono é produzido juntamente com o óleo. A disponibilidade de um volume consideravél de dióxido de carbono derivado da produção de óleo no Pré-Sal favorece a utilização dos processos de EOR (Enhanced Oil Recovery) por injeção de gás. O processo de injeção de dióxido de carbono vem sendo utilizado em uma grande quantidade de projetos pelo mundo. A afinidade existente entre o óleo e o dióxido de carbono causa uma frente miscível entre as duas fases causando inchamento e vaporização do óleo dentro do reservatório. Para o estudo, foi utilizado um modelo base de reservatório de dupla-porosidade, desenvolvido pela CMG para o 6° Projeto de Soluções Comparativas da SPE, que modela sistemas de fraturas e de matriz e a tranferência de massa fluida entre elas, características de reservatórios naturalmente fraturados. Foi feita uma análise da injeção de diferentes vazões de dióxido de carbono no modelo base e em modelos semelhantes, com aumento e redução de 5 e 0.5 pontos nas propriedades de porosidade e permeabilidade da matriz, respectivamente, tendo a produção de óleo como resultado. A injeção de 25 milhões de pés cúbicos por dia de CO2 foi a vazão que obteve a melhor fator de recuperação
Resumo:
This work is divided into two independent papers.
PAPER 1.
Spall velocities were measured for nine experimental impacts into San Marcos gabbro targets. Impact velocities ranged from 1 to 6.5 km/sec. Projectiles were iron, aluminum, lead, and basalt of varying sizes. The projectile masses ranged from a 4 g lead bullet to a 0.04 g aluminum sphere. The velocities of fragments were measured from high-speed films taken of the events. The maximum spall velocity observed was 30 m/sec, or 0.56 percent of the 5.4 km/sec impact velocity. The measured velocities were compared to the spall velocities predicted by the spallation model of Melosh (1984). The compatibility between the spallation model for large planetary impacts and the results of these small scale experiments are considered in detail.
The targets were also bisected to observe the pattern of internal fractures. A series of fractures were observed, whose location coincided with the boundary between rock subjected to the peak shock compression and a theoretical "near surface zone" predicted by the spallation model. Thus, between this boundary and the free surface, the target material should receive reduced levels of compressive stress as compared to the more highly shocked region below.
PAPER 2.
Carbonate samples from the nuclear explosion crater, OAK, and a terrestrial impact crater, Meteor Crater, were analyzed for shock damage using electron para- magnetic resonance, EPR. The first series of samples for OAK Crater were obtained from six boreholes within the crater, and the second series were ejecta samples recovered from the crater floor. The degree of shock damage in the carbonate material was assessed by comparing the sample spectra to spectra of Solenhofen limestone, which had been shocked to known pressures.
The results of the OAK borehole analysis have identified a thin zone of highly shocked carbonate material underneath the crater floor. This zone has a maximum depth of approximately 200 ft below sea floor at the ground zero borehole and decreases in depth towards the crater rim. A layer of highly shocked material is also found on the surface in the vicinity of the reference bolehole, located outside the crater. This material could represent a fallout layer. The ejecta samples have experienced a range of shock pressures.
It was also demonstrated that the EPR technique is feasible for the study of terrestrial impact craters formed in carbonate bedrock. The results for the Meteor Crater analysis suggest a slight degree of shock damage present in the β member of the Kaibab Formation exposed in the crater walls.
Efects of mineral suspension and dissolution on strength and compressibility of soft carbonate rocks
Resumo:
© 2014 Elsevier B.V.Calcarenites are highly porous soft rocks formed of mainly carbonate grains bonded together by calcite bridges. The above characteristics make them prone to water-induced weathering, frequently featuring large caverns and inland natural underground cavities. This study is aimed to determine the main physical processes at the base of the short- and long-term weakening experienced by these rocks when interacting with water. We present the results of microscale experimental investigations performed on calcarenites from four different sites in Southern Italy. SEM, thin sections, X-ray CT observations and related analyses are used for both the interpretation-definition of the structure changes, and the identification-quantification of the degradation mechanisms. Two distinct types of bonding have been identified within the rock: temporary bonding (TB) and persistent bonding (PB). The diverse mechanisms linked to these two types of bonding explain both the observed fast decrease in rock strength when water fills the pores (short-term effect of water), identified with a short-term debonding (STD), and a long-term weakening of the material, when the latter is persistently kept in water-saturated conditions (long-term effect of water), identified with a long-term debonding (LTD). To highlight the micro-hydro-chemo-mechanical processes of formation and annihilation of the TB bonds and their role in the evolution of the mechanical strength of the material, mechanical tests on samples prepared by drying partially saturated calcarenite powder, or a mix of glass ballotini and calcarenite powder were conducted. The long-term debonding processes have also been investigated, using acid solutions in order to accelerate the reaction rates. This paper attempts to identify and quantify differences between the two types of bonds and the relative micro-scale debonding processes leading to the macro-scale material weakening mechanisms.
Resumo:
Thrust fault-related folds in carbonate rocks are characterized by deformation accommodated by different structures, such as joints, faults, pressure solution seams, and deformation bands. Defining the development of fracture systems related to the folding process is significant both for theoretical and practical purposes. Fracture systems are useful constrains in order to understand the kinematical evolution of the fold. Furthermore, understanding the relationships between folding and fracturing provides a noteworthy contribution for reconstructing the geodynamic and the structural evolution of the studied area. Moreover, as fold-related fractures influence fluid flow through rocks, fracture systems are relevant for energy production (geothermal studies, methane and CO2 , storage and hydrocarbon exploration), environmental and social issues (pollutant distribution, aquifer characterization). The PhD project shows results of a study carried out in a multilayer carbonate anticline characterized by different mechanical properties. The aim of this study is to understand the factors which influence the fracture formation and to define their temporal sequence during the folding process. The studied are is located in the Cingoli anticline (Northern Apennines), which is characterized by a pelagic multilayer characterized by sequences with different mechanical stratigraphies. A multi-scale analysis has been made in several outcrops located in different structural positions. This project shows that the conceptual sketches proposed in literature and the strain distribution models outline well the geometrical orientation of most of the set of fractures observed in the Cingoli anticline. On the other hand, the present work suggests the relevance of the mechanical stratigraphy in particular controlling the type of fractures formed (e.g. pressure solution seams, joints or shear fractures) and their subsequent evolution. Through a multi-scale analysis, and on the basis of the temporal relationship between fracture sets and their orientation respect layering, I also suggest a conceptual model for fracture systems formation.