997 resultados para Robots architecture
Resumo:
The robotics is one of the most active areas. We also need to join a large number of disciplines to create robots. With these premises, one problem is the management of information from multiple heterogeneous sources. Each component, hardware or software, produces data with different nature: temporal frequencies, processing needs, size, type, etc. Nowadays, technologies and software engineering paradigms such as service-oriented architectures are applied to solve this problem in other areas. This paper proposes the use of these technologies to implement a robotic control system based on services. This type of system will allow integration and collaborative work of different elements that make up a robotic system.
Resumo:
An active, attentionally-modulated recognition architecture is proposed for object recognition and scene analysis. The proposed architecture forms part of navigation and trajectory planning modules for mobile robots. Key characteristics of the system include movement planning and execution based on environmental factors and internal goal definitions. Real-time implementation of the system is based on space-variant representation of the visual field, as well as an optimal visual processing scheme utilizing separate and parallel channels for the extraction of boundaries and stimulus qualities. A spatial and temporal grouping module (VWM) allows for scene scanning, multi-object segmentation, and featural/object priming. VWM is used to modulate a tn~ectory formation module capable of redirecting the focus of spatial attention. Finally, an object recognition module based on adaptive resonance theory is interfaced through VWM to the visual processing module. The system is capable of using information from different modalities to disambiguate sensory input.
Resumo:
La crescente disponibilità di dispositivi meccanici e -soprattutto - elettronici le cui performance aumentano mentre il loro costo diminuisce, ha permesso al campo della robotica di compiere notevoli progressi. Tali progressi non sono stati fatti unicamente per ciò che riguarda la robotica per uso industriale, nelle catene di montaggio per esempio, ma anche per quella branca della robotica che comprende i robot autonomi domestici. Questi sistemi autonomi stanno diventando, per i suddetti motivi, sempre più pervasivi, ovvero sono immersi nello stesso ambiente nel quale vivono gli essere umani, e interagiscono con questi in maniera proattiva. Essi stanno compiendo quindi lo stesso percorso che hanno attraversato i personal computer all'incirca 30 anni fa, passando dall'essere costosi ed ingombranti mainframe a disposizione unicamente di enti di ricerca ed università, ad essere presenti all'interno di ogni abitazione, per un utilizzo non solo professionale ma anche di assistenza alle attività quotidiane o anche di intrattenimento. Per questi motivi la robotica è un campo dell'Information Technology che interessa sempre più tutti i tipi di programmatori software. Questa tesi analizza per prima cosa gli aspetti salienti della programmazione di controllori per robot autonomi (ovvero senza essere guidati da un utente), quindi, come l'approccio basato su agenti sia appropriato per la programmazione di questi sistemi. In particolare si mostrerà come un approccio ad agenti, utilizzando il linguaggio di programmazione Jason e quindi l'architettura BDI, sia una scelta significativa, dal momento che il modello sottostante a questo tipo di linguaggio è basato sul ragionamento pratico degli esseri umani (Human Practical Reasoning) e quindi è adatto alla implementazione di sistemi che agiscono in maniera autonoma. Dato che le possibilità di utilizzare un vero e proprio sistema autonomo per poter testare i controllori sono ridotte, per motivi pratici, economici e temporali, mostreremo come è facile e performante arrivare in maniera rapida ad un primo prototipo del robot tramite l'utilizzo del simulatore commerciale Webots. Il contributo portato da questa tesi include la possibilità di poter programmare un robot in maniera modulare e rapida per mezzo di poche linee di codice, in modo tale che l'aumento delle funzionalità di questo risulti un collo di bottiglia, come si verifica nella programmazione di questi sistemi tramite i classici linguaggi di programmazione imperativi. L'organizzazione di questa tesi prevede un capitolo di background nel quale vengono riportare le basi della robotica, della sua programmazione e degli strumenti atti allo scopo, un capitolo che riporta le nozioni di programmazione ad agenti, tramite il linguaggio Jason -quindi l'architettura BDI - e perché tale approccio è adatto alla programmazione di sistemi di controllo per la robotica. Successivamente viene presentata quella che è la struttura completa del nostro ambiente di lavoro software che comprende l'ambiente ad agenti e il simulatore, quindi nel successivo capitolo vengono mostrate quelle che sono le esplorazioni effettuate utilizzando Jason e un approccio classico (per mezzo di linguaggi classici), attraverso diversi casi di studio di crescente complessità; dopodiché, verrà effettuata una valutazione tra i due approcci analizzando i problemi e i vantaggi che comportano questi. Infine, la tesi terminerà con un capitolo di conclusioni e di riflessioni sulle possibili estensioni e lavori futuri.
Resumo:
A combined Short-Term Learning (STL) and Long-Term Learning (LTL) approach to solving mobile robot navigation problems is presented and tested in both real and simulated environments. The LTL consists of rapid simulations that use a Genetic Algorithm to derive diverse sets of behaviours. These sets are then transferred to an idiotypic Artificial Immune System (AIS), which forms the STL phase, and the system is said to be seeded. The combined LTL-STL approach is compared with using STL only, and with using a handdesigned controller. In addition, the STL phase is tested when the idiotypic mechanism is turned off. The results provide substantial evidence that the best option is the seeded idiotypic system, i.e. the architecture that merges LTL with an idiotypic AIS for the STL. They also show that structurally different environments can be used for the two phases without compromising transferability.
Resumo:
This paper demonstrates, following Vygotsky, that language and tool use has a critical role in the collaborative problem-solving behaviour of school-age children. It reports original ethnographic classroom research examining the convergence of speech and practical activity in children’s collaborative problem solving with robotics programming tasks. The researchers analysed children’s interactions during a series of problem solving experiments in which Lego Mindstorms toolsets were used by teachers to create robotics design challenges among 24 students in a Year 4 Australian classroom (students aged 8.5–9.5 years). The design challenges were incrementally difficult, beginning with basic programming of straight line movement, and progressing to more complex challenges involving programming of the robots to raise Lego figures from conduit pipes using robots as pulleys with string and recycled materials. Data collection involved micro-genetic analysis of students’ speech interactions with tools, peers, and other experts, teacher interviews, and student focus group data. Coding the repeated patterns in the transcripts, the authors outline the structure of the children’s social speech in joint problem solving, demonstrating the patterns of speech and interaction that play an important role in the socialisation of the school-age child’s practical intellect.
Resumo:
In this paper we describe cooperative control algorithms for robots and sensor nodes in an underwater environment. Cooperative navigation is defined as the ability of a coupled system of autonomous robots to pool their resources to achieve long-distance navigation and a larger controllability space. Other types of useful cooperation in underwater environments include: exchange of information such as data download and retasking; cooperative localization and tracking; and physical connection (docking) for tasks such as deployment of underwater sensor networks, collection of nodes and rescue of damaged robots. We present experimental results obtained with an underwater system that consists of two very different robots and a number of sensor network modules. We present the hardware and software architecture of this underwater system. We then describe various interactions between the robots and sensor nodes and between the two robots, including cooperative navigation. Finally, we describe our experiments with this underwater system and present data.
Resumo:
We present a framework and first set of simulations for evolving a language for communicating about space. The framework comprises two components: (1) An established mobile robot platform, RatSLAM, which has a "brain" architecture based on rodent hippocampus with the ability to integrate visual and odometric cues to create internal maps of its environment. (2) A language learning system based on a neural network architecture that has been designed and implemented with the ability to evolve generalizable languages which can be learned by naive learners. A study using visual scenes and internal maps streamed from the simulated world of the robots to evolve languages is presented. This study investigated the structure of the evolved languages showing that with these inputs, expressive languages can effectively categorize the world. Ongoing studies are extending these investigations to evolve languages that use the full power of the robots representations in populations of agents.
Resumo:
This paper describes a software architecture for real-world robotic applications. We discuss issues of software reliability, testing and realistic off-line simulation that allows the majority of the automation system to be tested off-line in the laboratory before deployment in the field. A recent project, the automation of a very large mining machine is used to illustrate the discussion.
Resumo:
There is an increased interest in the use of Unmanned Aerial Vehicles for load transportation from environmental remote sensing to construction and parcel delivery. One of the main challenges is accurate control of the load position and trajectory. This paper presents an assessment of real flight trials for the control of an autonomous multi-rotor with a suspended slung load using only visual feedback to determine the load position. This method uses an onboard camera to take advantage of a common visual marker detection algorithm to robustly detect the load location. The load position is calculated using an onboard processor, and transmitted over a wireless network to a ground station integrating MATLAB/SIMULINK and Robotic Operating System (ROS) and a Model Predictive Controller (MPC) to control both the load and the UAV. To evaluate the system performance, the position of the load determined by the visual detection system in real flight is compared with data received by a motion tracking system. The multi-rotor position tracking performance is also analyzed by conducting flight trials using perfect load position data and data obtained only from the visual system. Results show very accurate estimation of the load position (~5% Offset) using only the visual system and demonstrate that the need for an external motion tracking system is not needed for this task.
Resumo:
This article discusses the issues of adaptive autonomous navigation as a challenge of artificial intelligence. We argue that, in order to enhance the dexterity and adaptivity in robot navigation, we need to take into account the decentralized mechanisms which exploit physical system-environment interactions. In this paper, by introducing a few underactuated locomotion systems, we explain (1) how mechanical body structures are related to motor control in locomotion behavior, (2) how a simple computational control process can generate complex locomotion behavior, and (3) how a motor control architecture can exploit the body dynamics through a learning process. Based on the case studies, we discuss the challenges and perspectives toward a new framework of adaptive robot control. © Springer-Verlag Berlin Heidelberg 2007.
Resumo:
Interest on using teams of mobile robots has been growing, due to their potential to cooperate for diverse purposes, such as rescue, de-mining, surveillance or even games such as robotic soccer. These applications require a real-time middleware and wireless communication protocol that can support an efficient and timely fusion of the perception data from different robots as well as the development of coordinated behaviours. Coordinating several autonomous robots towards achieving a common goal is currently a topic of high interest, which can be found in many application domains. Despite these different application domains, the technical problem of building an infrastructure to support the integration of the distributed perception and subsequent coordinated action is similar. This problem becomes tougher with stronger system dynamics, e.g., when the robots move faster or interact with fast objects, leading to tighter real-time constraints. This thesis work addressed computing architectures and wireless communication protocols to support efficient information sharing and coordination strategies taking into account the real-time nature of robot activities. The thesis makes two main claims. Firstly, we claim that despite the use of a wireless communication protocol that includes arbitration mechanisms, the self-organization of the team communications in a dynamic round that also accounts for variable team membership, effectively reduces collisions within the team, independently of its current composition, significantly improving the quality of the communications. We will validate this claim in terms of packet losses and communication latency. We show how such self-organization of the communications can be achieved in an efficient way with the Reconfigurable and Adaptive TDMA protocol. Secondly, we claim that the development of distributed perception, cooperation and coordinated action for teams of mobile robots can be simplified by using a shared memory middleware that replicates in each cooperating robot all necessary remote data, the Real-Time Database (RTDB) middleware. These remote data copies, which are updated in the background by the selforganizing communications protocol, are extended with age information automatically computed by the middleware and are locally accessible through fast primitives. We validate our claim showing a parsimonious use of the communication medium, improved timing information with respect to the shared data and the simplicity of use and effectiveness of the proposed middleware shown in several use cases, reinforced with a reasonable impact in the Middle Size League of RoboCup.
Resumo:
When developing software for autonomous mobile robots, one has to inevitably tackle some kind of perception. Moreover, when dealing with agents that possess some level of reasoning for executing their actions, there is the need to model the environment and the robot internal state in a way that it represents the scenario in which the robot operates. Inserted in the ATRI group, part of the IEETA research unit at Aveiro University, this work uses two of the projects of the group as test bed, particularly in the scenario of robotic soccer with real robots. With the main objective of developing algorithms for sensor and information fusion that could be used e ectively on these teams, several state of the art approaches were studied, implemented and adapted to each of the robot types. Within the MSL RoboCup team CAMBADA, the main focus was the perception of ball and obstacles, with the creation of models capable of providing extended information so that the reasoning of the robot can be ever more e ective. To achieve it, several methodologies were analyzed, implemented, compared and improved. Concerning the ball, an analysis of ltering methodologies for stabilization of its position and estimation of its velocity was performed. Also, with the goal keeper in mind, work has been done to provide it with information of aerial balls. As for obstacles, a new de nition of the way they are perceived by the vision and the type of information provided was created, as well as a methodology for identifying which of the obstacles are team mates. Also, a tracking algorithm was developed, which ultimately assigned each of the obstacles a unique identi er. Associated with the improvement of the obstacles perception, a new algorithm of estimating reactive obstacle avoidance was created. In the context of the SPL RoboCup team Portuguese Team, besides the inevitable adaptation of many of the algorithms already developed for sensor and information fusion and considering that it was recently created, the objective was to create a sustainable software architecture that could be the base for future modular development. The software architecture created is based on a series of di erent processes and the means of communication among them. All processes were created or adapted for the new architecture and a base set of roles and behaviors was de ned during this work to achieve a base functional framework. In terms of perception, the main focus was to de ne a projection model and camera pose extraction that could provide information in metric coordinates. The second main objective was to adapt the CAMBADA localization algorithm to work on the NAO robots, considering all the limitations it presents when comparing to the MSL team, especially in terms of computational resources. A set of support tools were developed or improved in order to support the test and development in both teams. In general, the work developed during this thesis improved the performance of the teams during play and also the e ectiveness of the developers team when in development and test phases.
Resumo:
Dynamical systems theory is used as a theoretical language and tool to design a distributed control architecture for teams of mobile robots, that must transport a large object and simultaneously avoid collisions with (either static or dynamic) obstacles. Here we demonstrate in simulations and implementations in real robots that it is possible to simplify the architectures presented in previous work and to extend the approach to teams of n robots. The robots have no prior knowledge of the environment. The motion of each robot is controlled by a time series of asymptotical stable states. The attractor dynamics permits the integration of information from various sources in a graded manner. As a result, the robots show a strikingly smooth an stable team behaviour.
Resumo:
This paper proposes a parallel architecture for estimation of the motion of an underwater robot. It is well known that image processing requires a huge amount of computation, mainly at low-level processing where the algorithms are dealing with a great number of data. In a motion estimation algorithm, correspondences between two images have to be solved at the low level. In the underwater imaging, normalised correlation can be a solution in the presence of non-uniform illumination. Due to its regular processing scheme, parallel implementation of the correspondence problem can be an adequate approach to reduce the computation time. Taking into consideration the complexity of the normalised correlation criteria, a new approach using parallel organisation of every processor from the architecture is proposed
Resumo:
This paper surveys control architectures proposed in the literature and describes a control architecture that is being developed for a semi-autonomous underwater vehicle for intervention missions (SAUVIM) at the University of Hawaii. Conceived as hybrid, this architecture has been organized in three layers: planning, control and execution. The mission is planned with a sequence of subgoals. Each subgoal has a related task supervisor responsible for arranging a set of pre-programmed task modules in order to achieve the subgoal. Task modules are the key concept of the architecture. They are the main building blocks and can be dynamically re-arranged by the task supervisor. In our architecture, deliberation takes place at the planning layer while reaction is dealt through the parallel execution of the task modules. Hence, the system presents both a hierarchical and an heterarchical decomposition, being able to show a predictable response while keeping rapid reactivity to the dynamic environment