1000 resultados para Robotica evolutiva, algoritmi genetici, reti neurali
Resumo:
Le azioni che un robot dovrà intraprendere per riuscire a portare a termine un determinato task non sono sempre note a priori. In situazioni dove l’ambiente in cui il robot si muove e con cui interagisce risulta impredicibile, variabile o persino ignoto, diventa pressocché impossibile progettare un algoritmo universale, che tenga conto di tutte le possibili variabili, avvalendosi dei metodi classici di programmazione e design. La Robotica Evolutiva (ER) è una branca della Computazione Evolutiva (EC) che si occupa di risolvere questo problema avvalendosi di specifici Algoritmi Evolutivi (EA) applicati alla robotica. Gli utilizzi della Robotica Evolutiva sono molteplici e spaziano dalla ricerca di soluzioni per problemi/task complessi allo studio e alla riproduzione di fenomeni fisiologici e biologici per riuscire a comprendere (o ipotizzare) l’evoluzione di alcuni tratti genetici presenti nel genere animale/umano. Lo scopo di questo elaborato è di predisporre una base, una visione generale per chiunque voglia intraprendere studi approfonditi nella Robotica Evolutiva, esaminando lo stato attuale delle sperimentazioni, gli obiettivi raggiunti e le sfide che ogni ricercatore di ER deve affrontare ogni giorno per riuscire portare questo campo di studi nel mondo reale, fuori dall’ambiente simulato e ideale.
Resumo:
Water distribution networks optimization is a challenging problem due to the dimension and the complexity of these systems. Since the last half of the twentieth century this field has been investigated by many authors. Recently, to overcome discrete nature of variables and non linearity of equations, the research has been focused on the development of heuristic algorithms. This algorithms do not require continuity and linearity of the problem functions because they are linked to an external hydraulic simulator that solve equations of mass continuity and of energy conservation of the network. In this work, a NSGA-II (Non-dominating Sorting Genetic Algorithm) has been used. This is a heuristic multi-objective genetic algorithm based on the analogy of evolution in nature. Starting from an initial random set of solutions, called population, it evolves them towards a front of solutions that minimize, separately and contemporaneously, all the objectives. This can be very useful in practical problems where multiple and discordant goals are common. Usually, one of the main drawback of these algorithms is related to time consuming: being a stochastic research, a lot of solutions must be analized before good ones are found. Results of this thesis about the classical optimal design problem shows that is possible to improve results modifying the mathematical definition of objective functions and the survival criterion, inserting good solutions created by a Cellular Automata and using rules created by classifier algorithm (C4.5). This part has been tested using the version of NSGA-II supplied by Centre for Water Systems (University of Exeter, UK) in MATLAB® environment. Even if orientating the research can constrain the algorithm with the risk of not finding the optimal set of solutions, it can greatly improve the results. Subsequently, thanks to CINECA help, a version of NSGA-II has been implemented in C language and parallelized: results about the global parallelization show the speed up, while results about the island parallelization show that communication among islands can improve the optimization. Finally, some tests about the optimization of pump scheduling have been carried out. In this case, good results are found for a small network, while the solutions of a big problem are affected by the lack of constraints on the number of pump switches. Possible future research is about the insertion of further constraints and the evolution guide. In the end, the optimization of water distribution systems is still far from a definitive solution, but the improvement in this field can be very useful in reducing the solutions cost of practical problems, where the high number of variables makes their management very difficult from human point of view.
Resumo:
Il lavoro è parte integrante di un progetto di ricerca del Ministero della Salute ed è stato sviluppato presso la Fisica Sanitaria ed il reparto di Radioterapia Oncologica dell’Azienda Ospedaliero Universitaria di Modena. L’obiettivo è la realizzazione di modelli predittivi e di reti neurali per tecniche di warping in ambito clinico. Modifiche volumetrico-spaziali di organi a rischio e target tumorali, durante trattamenti tomoterapici, possono alterare la distribuzione di dose rispetto ai constraints delineati in fase di pianificazione. Metodologie radioterapiche per la valutazione di organ motion e algoritmi di registrazione ibrida permettono di generare automaticamente ROI deformate e quantificare la divergenza dal piano di trattamento iniziale. Lo studio si focalizzata sulle tecniche di Adaptive Radiation Therapy (ART) mediante la meta-analisi di 51 pazienti sottoposti a trattamento mediante Tomotherapy. Studiando il comportamento statistico del campione, sono state generate analisi predittive per quantificare in tempo reale divergenze anatomico dosimetriche dei pazienti rispetto al piano originale e prevedere la loro ripianificazione terapeutica. I modelli sono stati implementati in MATLAB, mediante Cluster Analysis e Support Vector Machines; l’analisi del dataset ha evidenziato il valore aggiunto apportabile dagli algoritmi di deformazione e dalle tecniche di ART. La specificità e sensibilità della metodica è stata validata mediante l’utilizzo di analisi ROC. Gli sviluppi del presente lavoro hanno aperto una prospettiva di ricerca e utilizzo in trattamenti multicentrici e per la valutazione di efficacia ed efficienza delle nuove tecnologie in ambito RT.
Resumo:
L’intelligenza artificiale, ovvero lo studio e la progettazione di sistemi intelligenti, mira a riprodurre alcuni aspetti dell’intelligenza umana, come il linguaggio e il ragionamento deduttivo, nei computer. La robotica, invece, cerca spesso di ricreare nei robot comportamenti adattativi, come l’abilità di manipolare oggetti o camminare, mediante l’utilizzo di algoritmi in grado di generare comportamenti desiderati. Una volta realizzato uno di questi algoritmi specificamente per una certa abilità, si auspica che tale algoritmo possa essere riutilizzato per generare comportamenti più complessi fino a che il comportamento adattativo del robot non si mostri ad un osservatore esterno come intelligente; purtroppo questo non risulta sempre possibile e talvolta per generare comportamenti di maggiore complessità è necessario riscrivere totalmente gli algoritmi. Appare quindi evidente come nel campo della robotica l’attenzione sia incentrata sul comportamento, perché le azioni di un robot generano nuove stimolazioni sensoriali, che a loro volta influiscono sulle sue azioni future. Questo tipo di intelligenza artificiale (chiamata propriamente embodied cognition) differisce da quella propriamente detta per il fatto che l’intelligenza non emerge dall’introspezione ma dalle interazioni via via più complesse che la macchina ha con l’ambiente circostante. Gli esseri viventi presenti in natura mostrano, infatti, alcuni fenomeni che non sono programmati a priori nei geni, bensì frutto dell’interazione che l’organismo ha con l’ambiente durante le varie fasi del suo sviluppo. Volendo creare una macchina che sia al contempo autonoma e adattativa, si devono affrontare due problemi: il primo è relativo alla difficoltà della progettazione di macchine autonome, il secondo agli ingenti costi di sviluppo dei robot. Alla fine degli anni ’80 nasce la robotica evolutiva che, traendo ispirazione dall’evoluzione biologica, si basa sull’utilizzo di software in grado di rappresentare popolazioni di robot virtuali e la capacità di farli evolvere all’interno di un simulatore, in grado di rappresentare le interazioni tra mente e corpo del robot e l’ambiente, per poi realizzare fisicamente solo i migliori. Si utilizzano algoritmi evolutivi per generare robot che si adattano, anche dal punto di vista della forma fisica, all’ambiente in cui sono immersi. Nel primo capitolo si tratterà di vita ed evoluzione artificiali, concetti che verranno ripresi nel secondo capitolo, dedicato alle motivazioni che hanno portato alla nascita della robotica evolutiva, agli strumenti dei quali si avvale e al rapporto che ha con la robotica tradizionale e le sue declinazioni. Nel terzo capitolo si presenteranno i tre formalismi mediante i quali si sta cercando di fornire un fondamento teorico a questa disciplina. Infine, nel quarto capitolo saranno mostrati i problemi che ancora oggi non hanno trovato soluzione e le sfide che si devono affrontare trattando di robotica evolutiva.
Resumo:
Il progetto di un velivolo risulta essere un processo multidisciplinare molto complesso. Per poter determinare una configurazione di variabili che permetta di soddisfare i requisiti che si desiderano ottenere dal velivolo, sono necessarie una serie di stime che richiedono altrettanti cicli di analisi delle caratteristiche, prima di poter ottenere una configurazione completa o accettabile. Il processo di progetto richiede, così, un gran numero di iterazioni per poter trovare la migliore configurazione. In questo lavoro di tesi verranno descritti gli strumenti di ottimizzazione noti come algoritmi genetici e verrà presentato come questi possano essere inquadrati all'interno della fase preliminare del progetto di un velivolo.
Resumo:
In questo studio sarà trattato lo sviluppo degli algoritmi genetici, uno strumento di calcolo nato ispirandosi alle leggi Darwiniane sull’evoluzione naturale. Questi algoritmi, le cui basi furono introdotte a partire dagli anni '40, mirano alla risoluzione di una vasta categoria di problemi computazionali utilizzando un approccio differente, basato sulle regole di mutazione e ricombinazione proprie della genetica. Essi permettono infatti di valutare delle soluzioni di partenza e, grazie alle variazioni introdotte dalla modifica casuale o dalla ricombinazione di queste, crearne di nuove nel tentativo di convergere verso soluzioni ottimali. Questo studio si propone come una descrizione di questo strumento, dei suoi sviluppi e delle sue potenzialità in ambito bioingegneristico, focalizzandosi sul suo utilizzo recente nell’ identificazione parametrica di modelli cardiaci.
Resumo:
In un sistema radar è fondamentale rilevare, riconoscere e cercare di seguire il percorso di un eventuale intruso presente in un’area di osservazione al fine ultimo della sicurezza, sia che si consideri l’ambito militare, che anche quello civile. A questo proposito sono stati fatti passi avanti notevoli nella creazione e sviluppo di sistemi di localizzazione passiva che possano rilevare un target (il quale ha come unica proprietà quella di riflettere un segnale inviato dal trasmettitore), in modo che esso sia nettamente distinto rispetto al caso di assenza dell’intruso stesso dall’area di sorveglianza. In particolare l’ultilizzo di Radar Multistatico (ossia un trasmettitore e più ricevitori) permette una maggior precisione nel controllo dell’area d’osservazione. Tra le migliori tecnologie a supporto di questa analisi vi è l’UWB (Ultra Wide-Band), che permette di sfruttare una banda molto grande con il riscontro di una precisione che può arrivare anche al centimetro per scenari in-door. L’UWB utilizza segnali ad impulso molto brevi, a banda larga e che quindi permettono una risoluzione elevata, tanto da consentire, in alcune applicazioni, di superare i muri, rimuovendo facilmente gli elementi presenti nell’ambiente, ossia il clutter. Quindi è fondamentale conoscere algoritmi che permettano la detection ed il tracking del percorso compiuto dal target nell’area. In particolare in questa tesi vengono elaborati nuovi algoritmi di Clustering del segnale ricevuto dalla riflessione sull’intruso, utilizzati al fine di migliorare la visualizzazione dello stesso in post-processing. Infine questi algoritmi sono stati anche implementati su misure sperimentali attuate tramite nodi PulsOn 410 Time Domain, al fine ultimo della rilevazione della presenza di un target nell’area di osservazione dei nodi.
Resumo:
La tesi tratta dell'ottimizzazione di alcune tipologie di strutture reticolari. Per sviluppare i problemi analizzati ci si è avvalsi del software Grasshopper, conducendo poi l'ottimizzazione mediante un algoritmo genetico.
Resumo:
Il Modello di Hopfield è un tentativo di modellizzare il comportamento di una memoria associativa come proprietà emergente di un network costituito da unità a due stati interagenti tra loro, e costituisce un esempio di come gli strumenti della meccanica statistica possano essere applicati anche al campo delle reti neurali. Nel presente elaborato viene esposta l'analogia tra il Modello di Hopfield e il Modello di Ising nel contesto delle transizioni di fase, applicando a entrambi i modelli la teoria di campo medio. Viene esposta la dinamica a temperatura finita e ricavata e risolta l'equazione di punto a sella per il limite di non saturazione del Modello di Hopfield. Vengono inoltre accennate le principali estensioni del Modello di Hopfield.
Resumo:
La malattia COVID-19 associata alla sindrome respiratoria acuta grave da coronavirus 2 (SARS-CoV-2) ha rappresentato una grave minaccia per la salute pubblica e l’economia globale sin dalla sua scoperta in Cina, nel dicembre del 2019. Gli studiosi hanno effettuato numerosi studi ed in particolar modo l’applicazione di modelli epidemiologici costruiti a partire dai dati raccolti, ha permesso la previsione di diversi scenari sullo sviluppo della malattia, nel breve-medio termine. Gli obiettivi di questa tesi ruotano attorno a tre aspetti: i dati disponibili sulla malattia COVID-19, i modelli matematici compartimentali, con particolare riguardo al modello SEIJDHR che include le vaccinazioni, e l’utilizzo di reti neurali ”physics-informed” (PINNs), un nuovo approccio basato sul deep learning che mette insieme i primi due aspetti. I tre aspetti sono stati dapprima approfonditi singolarmente nei primi tre capitoli di questo lavoro e si sono poi applicate le PINNs al modello SEIJDHR. Infine, nel quarto capitolo vengono riportati frammenti rilevanti dei codici Python utilizzati e i risultati numerici ottenuti. In particolare vengono mostrati i grafici sulle previsioni nel breve-medio termine, ottenuti dando in input dati sul numero di positivi, ospedalizzati e deceduti giornalieri prima riguardanti la città di New York e poi l’Italia. Inoltre, nell’indagine della parte predittiva riguardante i dati italiani, si è individuato un punto critico legato alla funzione che modella la percentuale di ricoveri; sono stati quindi eseguiti numerosi esperimenti per il controllo di tali previsioni.
Resumo:
Il Deep Learning ha radicalmente trasformato il mondo del Machine Learning migliorando lo stato dell'arte in diversi campi che spaziano dalla computer vision al natural language processing. Non fermandosi a problemi di classificazione, negli ultimi anni, applicazioni di tipo generativo hanno portato alla creazione di immagini realistiche e documenti letterali. Il mondo della musica non è esente da una moltitudine di esperimenti nello stesso campo, con risultati ancora acerbi ma comunque potenzialmente interessanti. In questa tesi verrà discussa l'applicazione di un di modello appartenente alla famiglia del Deep Learning per la generazione di musica simbolica.
Resumo:
Uno degli obiettivi più ambizioni e interessanti dell'informatica, specialmente nel campo dell'intelligenza artificiale, consiste nel raggiungere la capacità di far ragionare un computer in modo simile a come farebbe un essere umano. I più recenti successi nell'ambito delle reti neurali profonde, specialmente nel campo dell'elaborazione del testo in linguaggio naturale, hanno incentivato lo studio di nuove tecniche per affrontare tale problema, a cominciare dal ragionamento deduttivo, la forma più semplice e lineare di ragionamento logico. La domanda fondamentale alla base di questa tesi è infatti la seguente: in che modo una rete neurale basata sull'architettura Transformer può essere impiegata per avanzare lo stato dell'arte nell'ambito del ragionamento deduttivo in linguaggio naturale? Nella prima parte di questo lavoro presento uno studio approfondito di alcune tecnologie recenti che hanno affrontato questo problema con intuizioni vincenti. Da questa analisi emerge come particolarmente efficace l'integrazione delle reti neurali con tecniche simboliche più tradizionali. Nella seconda parte propongo un focus sull'architettura ProofWriter, che ha il pregio di essere relativamente semplice e intuitiva pur presentando prestazioni in linea con quelle dei concorrenti. Questo approfondimento mette in luce la capacità dei modelli T5, con il supporto del framework HuggingFace, di produrre più risposte alternative, tra cui è poi possibile cercare esternamente quella corretta. Nella terza e ultima parte fornisco un prototipo che mostra come si può impiegare tale tecnica per arricchire i sistemi tipo ProofWriter con approcci simbolici basati su nozioni linguistiche, conoscenze specifiche sul dominio applicativo o semplice buonsenso. Ciò che ne risulta è un significativo miglioramento dell'accuratezza rispetto al ProofWriter originale, ma soprattutto la dimostrazione che è possibile sfruttare tale capacità dei modelli T5 per migliorarne le prestazioni.
Resumo:
Il tema centrale di questa tesi è il Machine Learning e la sua applicabilità nella ricostruzione di immagini biomediche, nello specifico di immagini mammarie. Il metodo attualmente più diffuso per la rilevazione del tumore al seno è la Mammografia 2D digitale, ma l’interesse mostrato ultimamente verso la Tomosintesi ha dimostrato una migliore capacità di diagnosi tumorale, anche ai primi stadi. Sebbene le due tecniche combinate siano in grado di rilevare anche la minima lesione, questo comporta una sovraesposizione alle radiazioni. Lo scopo finale, perciò, è quello di fornire un valido strumento di supporto per la caratterizzazione automatica di masse e opacità in immagini di tomosintesi, così da sottoporre il paziente ad un singolo esame radiografico. L'obiettivo è stato dunque ricostruire, tramite reti neurali Convoluzionali, immagini sintetiche di Tomosintesi di qualità superiore e il più possibile vicine a quelle di mammografia 2D. Sono state presentate nel dettaglio le due tecniche di imaging, le problematiche ad esse legate ed un approfondito confronto dosimetrico. Dopo una trattazione teorica dei principi delle CNN, sono state riportate le caratteristiche delle architetture di rete realizzate nella parte progettuale dell’elaborato. Sono stati valutati i comportamenti dei differenti modelli neurali per uno stesso Dataset di immagini di Tomosintesi, individuandone il migliore in termini di prestazioni finali nelle immagini di Test. Dagli studi effettuati è stata provata la possibilità, in un futuro sempre più prossimo, di applicare la Tomosintesi, con l’ausilio delle reti Convoluzionali, come tecnica unica di screening e di rilevazione del tumore al seno.