975 resultados para Road safety barriers


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road safety barriers are used to minimise the severity of road accidents and protect lives and property. There are several types of barrier in use today. This paper reports the initial phase of research carried out to study the impact response of portable water-filled barrier (PWFB) which has the potential to absorb impact energy and hence provide crash mitigation under low to moderate speeds. Current research on the impact and energy absorption capacity of water-filled road safety barriers is limited due to the complexity of fluid-structure interaction under dynamic impact. In this paper, a novel fluid-structure interaction method is developed based on the combination of Smooth Particle Hydrodynamics (SPH) and Finite Element Method (FEM). The sloshing phenomenon of water inside a PWFB is investigated to explore the energy absorption capacity of water under dynamic impact. It was found that water plays an important role in energy absorption. The coupling analysis developed in this paper will provide a platform to further the research in optimising the behaviour of the PWFB. The effect of the amount of water on its energy absorption capacity is investigated and the results have practical applications in the design of PWFBs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from moving traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement of the road barriers and vehicle redirectionality. Actual road safety barrier test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase prior to real vehicle test. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many is done pertaining to PWFB. This research probes a new method to model joint mechanism in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy to real work applications. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portable water-filled road barriers (PWFB) are roadside structures placed on temporary construction zones to separate work site from traffic. Recent changes in governing standards require PWFB to adhere to strict compliance in terms of lateral displacement and vehicle redirectionality. Actual PWFB test can be very costly, thus researchers resort to Finite Element Analysis (FEA) in the initial designs phase. There has been many research conducted on concrete barriers and flexible steel barriers using FEA, however not many was done pertaining to PWFB. This research probes a new technique to model joints in PWFB. Two methods to model the joining mechanism are presented and discussed in relation to its practicality and accuracy. Moreover, the study of the physical gap and mass of the barrier was investigated. Outcome from this research will benefit PWFB research and allow road barrier designers better knowledge in developing the next generation of road safety structures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portable water-filled barriers (PWFB) are roadside structures used to enhance safety at roadside work-zones. Ideally, a PWFB system is expected to protect persons and objects behind it and redirect the errant vehicle. The performance criteria of a road safety barrier system are (i) redirection of the vehicle after impact and (ii) lateral deflection within allowable limits. Since its inception, the PWFB has received criticism due to its underperformance compared to the heavier portable concrete barrier. A new generation composite high energy absorbing road safety barrier was recently developed by the authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Flexible design practices broadly permit that design values outside the normal range can be accepted as appropriate for a site-specific context providing that the risk is evaluated and is tolerable. Execution of flexible design demands some evaluation of risk. In restoration projects, it may be the case that an immovable object exists within the zone of the expected deflection of a road safety barrier system. Only by design exception can the situation be determined to be acceptable. However, the notion of using flexible design for road safety barrier design is not well developed. The existence of a diminishing return relationship between safety benefits and provision of increased clear zone has been established previously. This paper proposes that a similar rationale might reasonably apply for the deflection zone behind road safety barriers and describes how the risk associated with road safety barriers might be quantified in order that defensible road safety barrier design can exist below the lower bounds of normal design standards. As such, the methodology described in this paper may provide some basis to enable road authorities to make informed design decisions, particularly for restoration, or “Brownfield”, projects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water-filled portable road safety barriers are a common fixture in road works, however their use of water can be problematic, both in terms of the quantity of water used and the transportation of the water to the installation site. This project aims to develop a new design of portable road safety barrier, which will make novel use of composite and foam materials in order to reduce the barrier’s reliance on water in order to control errant vehicles. The project makes use of finite element (FE) techniques in order to simulate and evaluate design concepts. FE methods and models that have previously been tested and validated will be used in combination in order to provide the most accurate numerical simulations available to drive the project forward. LS-DYNA code is as highly dynamic, non-linear numerical solver which is commonly used in the automotive and road safety industries. Several complex materials and physical interactions are to be simulated throughout the course of the project including aluminium foams, composite laminates and water within the barrier during standardised impact tests. Techniques to be used include FE, smoothed particle hydrodynamics (SPH) and weighted multi-parameter optimisation techniques. A detailed optimisation of several design parameters with specific design goals will be performed with LS-DYNA and LS-OPT, which will require a large number of high accuracy simulations and advanced visualisation techniques. Supercomputing will play a central role in the project, enabling the numerous medium element count simulations necessary in order to determine the optimal design parameters of the barrier to be performed. Supercomputing will also allow the development of useful methods of visualisation results and the production of highly detailed simulations for end-product validation purposes. Efforts thus far have been towards integrating various numerical methods (including FEM, SPH and advanced materials models) together in an efficient and accurate manner. Various designs of joining mechanisms have been developed and are currently being developed into FE models and simulations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, Portable Water-filled barriers (PWFB) face challenges such as large lateral displacements, tearing and breakage during impact; especially at higher speeds. This study explores the use of composite action to enhance the crashworthiness of PWFBs and enable their usage at higher speeds. Initially, energy absorption capability of water in PWFB is investigated. Then, composite action of the PWFB with the introduction of steel frame is considered to evaluate its enhanced impact performance. Findings of the study show that the initial height of the impact must be lower than the free surface level of water in a PWFB in order for the water to provide significant crash energy absorption. In general, an impact of a road barrier with 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacements and sloshing response. Information from this research will aid in the design of new generation roadside safety structures aimed to increase safety in modern roadways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Road safety barriers are used to redirect traffic at roadside work-zones. When filled with water, these barriers are able to withstand low to moderate impact speeds up to 50kmh-1. Despite this feature, there are challenges when using portable water-filled barriers (PWFBs) such as large lateral displacements as well as tearing and breakage during impact, especially at higher speeds. In this study, the authors explore the use of composite action to enhance the crashworthiness of PWFBs and enable their use at higher speeds. Initially, we investigated the energy absorption capability of water in PWFB. Then, we considered the composite action of a PWFB with the introduction of a steel frame to evaluate its impact on performance. Findings of the study show that the initial height of impact must be lower than the free surface level of water in a PWFB for the water to provide significant crash energy absorption. In general, impact of a road barrier that is 80% filled is a good estimation. Furthermore, the addition of a composite structure greatly reduces the probability of tearing by decreasing the strain and impact energy transferred to the shell container. This allows the water to remain longer in the barrier to absorb energy via inertial displacement and sloshing response. Information from this research will aid in the design of next generation roadside safety structures aimed to increase safety on modern roadways.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis provides an experimental and computational platform for investigating the performance and behaviour of water filled, plastic portable road safety barriers in an isolated impact scenario. A schedule of experimental impact tests were conducted assessing the impact response of an existing design of road safety barrier utilising a novel horizontal impact testing system. A coupled finite element and smooth particle hydrodynamic model of the barrier system was developed and validated against the results of the experimental tests. The validated model was subsequently used to assess the effect of certain composite materials on the impact performance of the water filled, portable road safety barrier system.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This research has developed an innovative road safety barrier system that will enhance roadside safety. In doing so, the research developed new knowledge in the field of road crash mitigation for high speed vehicle impact involving plastic road safety barriers. This road safety barrier system has the required feature to redirecting an errant vehicle with limited lateral displacement. Research was carried out using dynamic computer simulation technique support by experimental testing. Future road safety barrier designers may use the information in this research as a design guideline to improve the performance and redirectional capability of the road safety barrier system. This will lead to better safety conditions on the roadways and potentially save lives.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portable water-filled barriers (PWFBs) are roadside appurtenances that are used to prevent errant vehicles from penetrating into temporary construction zones on roadways. A numerical model of the composite PWFB, consisting of a plastic shell, steel frame, water and foam was developed and validated against results from full scale experimental tests. This model can be extended to larger scale impact cases, specifically ones that include actual vehicle models. The cost-benefit of having a validated numerical model is significant and this allows the road barrier designer to conduct extensive tests via numerical simulations prior to standard impact tests Effects of foam cladding as additional energy absorption material in the PWFB was investigated. Different types of foam were treated and it was found that XPS foam was the most suitable foam type. Results from this study will aid PWFB designers in developing new generation of roadside structures which will provide enhanced road safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Portable water-filled barriers (PWFBs) are roadside appurtenances that prevent vehicles from penetrating into temporary construction zones on roadways. PWFBs are required to satisfy the strict regulations for vehicle re-direction in tests. However, many of the current PWFBs fail to re-direct the vehicle at high speeds due to the inability of the joints to provide appropriate stiffness. The joint mechanism hence plays a crucial role in the performance of a PWFB system at high speed impacts. This paper investigates the desired features of the joint mechanism in a PWFB system that can re-direct vehicles at high speeds, while limiting the lateral displacement to acceptable limits. A rectangular “wall” representative of a 30 m long barrier system was modeled and a novel method of joining adjacent road barriers was introduced through appropriate pin-joint connections. The impact response of the barrier “wall” and the vehicle was obtained and the results show that a rotational stiffness of 3000 kNm/rad at the joints seems to provide the desired features of the PWFB system to re-direct impacting vehicles and restrict the lateral deflection. These research findings will be useful to safety engineers and road barrier designers in developing a new generation of PWFBs for increased road safety.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To explore potential barriers to and facilitators for implementing occupational road safety initiatives, in-depth interviews were conducted with personnel from four major Australian organizations. Twenty-four participants were involved in the interviews comprising 16 front line employees and eight managers. The interviews identified that employees perceived six organizational characteristics as potential barriers to implementing occupational road safety initiatives. These included: prioritisation of production over safety; complacency towards occupational road risks; insufficient resources; diversity; limited employee input in safety decisions; and a perception that road safety initiatives were an unnecessary burden. Of these organizational characteristics, prioritisation of production over safety and complacency were the most frequently cited barriers. In regards to facilitators, participants perceived three organizational characteristics as potential facilitators to implementing occupational road safety initiatives. These included: management commitment; the presence of existing systems that could support the implementation of initiatives; and supportive relationships. Of these organizational characteristics, management commitment was the most frequently cited facilitator.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Motorised countries have more fatal road crashes in rural areas than in urban areas. In Australia, over two thirds of the population live in urban areas, yet approximately 55 percent of the road fatalities occur in rural areas (ABS, 2006; Tziotis, Mabbot, Edmonston, Sheehan & Dwyer, 2005). Road and environmental factors increase the challenges of rural driving, but do not fully account for the disparity. Rural drivers are less compliant with recommendations regarding the “fatal four” behaviours of speeding, drink driving, seatbelt non-use and fatigue, and the reasons for their lower apparent receptivity for road safety messages are not well understood. Countermeasures targeting driver behaviour that have been effective in reducing road crashes in urban areas have been less successful in rural areas (FORS, 1995). However, potential barriers to receptivity for road safety information among rural road users have not been systematically investigated. This thesis aims to develop a road safety countermeasure that addresses three areas that potentially affect receptivity to rural road safety information. The first is psychological barriers of road users’ attitudes, including risk evaluation, optimism bias, locus of control and readiness to change. A second area is the timing and method of intervention delivery, which includes the production of a brief intervention and the feasibility of delivering it at a “teachable moment”. The third area under investigation is the content of the brief intervention. This study describes the process of developing an intervention that includes content to address road safety attitudes and improve safety behaviours of rural road users regarding the “fatal four”. The research commences with a review of the literature on rural road crashes, brief interventions, intervention design and implementation, and potential psychological barriers to receptivity. This literature provides a rationale for the development of a brief intervention for rural road safety with a focus on driver attitudes and behaviour. The research is then divided into four studies. The primary aim of Study One and Study Two is to investigate the receptivity of rural drivers to road safety interventions, with a view to identifying barriers to the efficacy of these strategies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

With the current National Road Safety Strategy [1] coming to the end of its term, it is timely to consider ways in which the next iteration of this strategy can be enhanced. Strategic planning should be a cyclic process in which learning and adaptation are just as important as planning and implementation. It will always be the case that some actions are not as effective as expected, or that barriers to effective implementation will emerge. Rather than being setbacks, these are opportunities for learning about the validity of our assumptions. They are also opportunities for us to adapt to meet unanticipated or emerging challenges. One of the positive aspects of the implementation of the first and second National Road Safety Strategies has been the willingness of road safety agencies to critically assess progress and to identify where and how actions would be better focused. This has been reflected in the evolving nature of the periodic National Road Safety Action Plans. As the decade of the current Strategy reaches an end, there is a need to take this process further, and undertake a thorough critical evaluation of the Strategy development and implementation. While not an attempt to be exhaustive, the following article will identify some key priorities for consideration as part of this process.