844 resultados para Road Features


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

In this paper a methodology for automatic extraction of road segments from images with different resolutions (low, middle and high resolution) is presented. It is based on a generalized concept of lines in digital images, by which lines can be described by the centerlines of two parallel edges. In the specific case of low resolution images, where roads are manifested as entities of 1 or 2 pixels wide, the proposed methodology combines an automatic image enhancement operation with the following strategies: automatic selection of the hysteresis thresholds and the Gaussian scale factor; line length thresholding; and polygonization. In medium and high resolution images roads manifest as narrow and elongated ribbons and, consequently, the extraction goal becomes the road centerlines. In this case, it is not necessary to apply the previous enhancement step used to enhance roads in low resolution images. The results obtained in the experimental evaluation satisfied all criteria established for the efficient extraction of road segments from different resolution images, providing satisfactory results in a completely automatic way.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Since last two decades researches have been working on developing systems that can assistsdrivers in the best way possible and make driving safe. Computer vision has played a crucialpart in design of these systems. With the introduction of vision techniques variousautonomous and robust real-time traffic automation systems have been designed such asTraffic monitoring, Traffic related parameter estimation and intelligent vehicles. Among theseautomatic detection and recognition of road signs has became an interesting research topic.The system can assist drivers about signs they don’t recognize before passing them.Aim of this research project is to present an Intelligent Road Sign Recognition System basedon state-of-the-art technique, the Support Vector Machine. The project is an extension to thework done at ITS research Platform at Dalarna University [25]. Focus of this research work ison the recognition of road signs under analysis. When classifying an image its location, sizeand orientation in the image plane are its irrelevant features and one way to get rid of thisambiguity is to extract those features which are invariant under the above mentionedtransformation. These invariant features are then used in Support Vector Machine forclassification. Support Vector Machine is a supervised learning machine that solves problemin higher dimension with the help of Kernel functions and is best know for classificationproblems.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Run-off-road (ROR) crashes have increasingly become a serious concern for transportation officials in the State of Florida. These types of crashes have increased proportionally in recent years statewide and have been the focus of the Florida Department of Transportation. The goal of this research was to develop statistical models that can be used to investigate the possible causal relationships between roadway geometric features and ROR crashes on Florida's rural and urban principal arterials. ^ In this research, Zero-Inflated Poisson (ZIP) and Zero-Inflated Negative Binomial (ZINB) Regression models were used to better model the excessive number of roadway segments with no ROR crashes. Since Florida covers a diverse area and since there are sixty-seven counties, it was divided into four geographical regions to minimize possible unobserved heterogeneity. Three years of crash data (2000–2002) encompassing those for principal arterials on the Florida State Highway System were used. Several statistical models based on the ZIP and ZINB regression methods were fitted to predict the expected number of ROR crashes on urban and rural roads for each region. Each region was further divided into urban and rural areas, resulting in a total of eight crash models. A best-fit predictive model was identified for each of these eight models in terms of AIC values. The ZINB regression was found to be appropriate for seven of the eight models and the ZIP regression was found to be more appropriate for the remaining model. To achieve model convergence, some explanatory variables that were not statistically significant were included. Therefore, strong conclusions cannot be derived from some of these models. ^ Given the complex nature of crashes, recommendations for additional research are made. The interaction of weather and human condition would be quite valuable in discerning additional causal relationships for these types of crashes. Additionally, roadside data should be considered and incorporated into future research of ROR crashes. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low noise surfaces have been increasingly considered as a viable and cost-effective alternative to acoustical barriers. However, road planners and administrators frequently lack information on the correlation between the type of road surface and the resulting noise emission profile. To address this problem, a method to identify and classify different types of road pavements was developed, whereby near field road noise is analyzed using statistical learning methods. The vehicle rolling sound signal near the tires and close to the road surface was acquired by two microphones in a special arrangement which implements the Close-Proximity method. A set of features, characterizing the properties of the road pavement, was extracted from the corresponding sound profiles. A feature selection method was used to automatically select those that are most relevant in predicting the type of pavement, while reducing the computational cost. A set of different types of road pavement segments were tested and the performance of the classifier was evaluated. Results of pavement classification performed during a road journey are presented on a map, together with geographical data. This procedure leads to a considerable improvement in the quality of road pavement noise data, thereby increasing the accuracy of road traffic noise prediction models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tutkielman tavoitteena oli selvittää Roosanauha kampanjan tuotteiden ostoon liittyvää aikeen muodostumista kuluttajilla. Lisäksi tavoitteena oli selvittää onko aikeen muodostumisessa eroja uuden pinkin värin tai lahjoitus ominaisuuden osalta. Tutkimus toteutettiin sähköisenä kyselynä, jota analysoitiin tilastollisin menetelmin, lähinnä korrelaatioiden avulla. Tutkimus ei saavuttanut toivottua päämääräänsä lähinnä huonoksi jääneen vastausten kokonaismäärän vuoksi.Joitakin suuntaa antavia tuloksia pystyttiin kuitenkin tunnistamaan. Tuloksissa oli viitteitä lahjoitusominaisuuden tärkeydestä kuluttajille sekä vaaleanpunaiseen väriin positiivisesti asennoitumisesta. Kampanjan jatkoa ajatellen markkinoijien on syytä huomata tuloksissa ilmennyt värin tärkeä rooli sekä lahjoitusominaisuudelle painottunut sosiaalisten normien vahvuus.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Contexte: L'obésité chez les jeunes représente aujourd’hui un problème de santé publique à l’échelle mondiale. Afin d’identifier des cibles potentielles pour des stratégies populationnelles de prévention, les liens entre les caractéristiques du voisinage, l’obésité chez les jeunes et les habitudes de vie font de plus en plus l’objet d’études. Cependant, la recherche à ce jour comporte plusieurs incohérences. But: L’objectif général de cette thèse est d’étudier la contribution de différentes caractéristiques du voisinage relativement à l’obésité chez les jeunes et les habitudes de vie qui y sont associées. Les objectifs spécifiques consistent à: 1) Examiner les associations entre la présence de différents commerces d’alimentation dans les voisinages résidentiels et scolaires des enfants et leurs habitudes alimentaires; 2) Examiner comment l’exposition à certaines caractéristiques du voisinage résidentiel détermine l’obésité au niveau familial (chez le jeune, la mère et le père), ainsi que l’obésité individuelle pour chaque membre de la famille; 3) Identifier des combinaisons de facteurs de risque individuels, familiaux et du voisinage résidentiel qui prédisent le mieux l’obésité chez les jeunes, et déterminer si ces profils de facteurs de risque prédisent aussi un changement dans l’obésité après un suivi de deux ans. Méthodes: Les données proviennent de l’étude QUALITY, une cohorte québécoise de 630 jeunes, âgés de 8-10 ans au temps 1, avec une histoire d’obésité parentale. Les voisinages de 512 participants habitant la Région métropolitaine de Montréal ont été caractérisés à l’aide de : 1) données spatiales provenant du recensement et de bases de données administratives, calculées pour des zones tampons à partir du réseau routier et centrées sur le lieu de la résidence et de l’école; et 2) des observations menées par des évaluateurs dans le voisinage résidentiel. Les mesures du voisinage étudiées se rapportent aux caractéristiques de l’environnement bâti, social et alimentaire. L’obésité a été estimée aux temps 1 et 2 à l’aide de l’indice de masse corporelle (IMC) calculé à partir du poids et de la taille mesurés. Les habitudes alimentaires ont été mesurées au temps 1 à l'aide de trois rappels alimentaires. Les analyses effectuées comprennent, entres autres, des équations d'estimation généralisées, des régressions multiniveaux et des analyses prédictives basées sur des arbres de décision. Résultats: Les résultats démontrent la présence d’associations avec l’obésité chez les jeunes et les habitudes alimentaires pour certaines caractéristiques du voisinage. En particulier, la présence de dépanneurs et de restaurants-minutes dans le voisinage résidentiel et scolaire est associée avec de moins bonnes habitudes alimentaires. La présence accrue de trafic routier, ainsi qu’un faible niveau de prestige et d’urbanisation dans le voisinage résidentiel sont associés à l’obésité familiale. Enfin, les résultats montrent qu’habiter un voisinage obésogène, caractérisé par une défavorisation socioéconomique, la présence de moins de parcs et de plus de dépanneurs, prédit l'obésité chez les jeunes lorsque combiné à la présence de facteurs de risque individuels et familiaux. Conclusion: Cette thèse contribue aux écrits sur les voisinages et l’obésité chez les jeunes en considérant à la fois l'influence potentielle du voisinage résidentiel et scolaire ainsi que l’influence de l’environnement familial, en utilisant des méthodes objectives pour caractériser le voisinage et en utilisant des méthodes statistiques novatrices. Les résultats appuient en outre la notion que les efforts de prévention de l'obésité doivent cibler les multiples facteurs de risque de l'obésité chez les jeunes dans les environnements bâtis, sociaux et familiaux de ces jeunes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The eukaryotic genome is a mosaic of eubacterial and archaeal genes in addition to those unique to itself. The mosaic may have arisen as the result of two prokaryotes merging their genomes, or from genes acquired from an endosymbiont of eubacterial origin. A third possibility is that the eukaryotic genome arose from successive events of lateral gene transfer over long periods of time. This theory does not exclude the endosymbiont, but questions whether it is necessary to explain the peculiar set of eukaryotic genes. We use phylogenetic studies and reconstructions of ancestral first appearances of genes on the prokaryotic phylogeny to assess evidence for the lateral gene transfer scenario. We find that phylogenies advanced to support fusion can also arise from a succession of lateral gene transfer events. Our reconstructions of ancestral first appearances of genes reveal that the various genes that make up the eukaryotic mosaic arose at different times and in diverse lineages on the prokaryotic tree, and were not available in a single lineage. Successive events of lateral gene transfer can explain the unusual mosaic structure of the eukaryotic genome, with its content linked to the immediate adaptive value of the genes its acquired. Progress in understanding eukaryotes may come from identifying ancestral features such as the eukaryotic splicesome that could explain why this lineage invaded, or created, the eukaryoticniche.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Excavation west of Wivelsfield, East Sussex, revealed part of an early Romano-British settlement. One of the round-houses may have had a non-domestic, possibly ritual, function. The settlement appears to have been subsequently incorporated within a rectilinear arrangement of field/enclosure ditches. Along the edge of one of these ditches were built a series of features interpreted as ovens, of varying form and likely use, from which charred waste from cereal processing and charcoal from coppiced woodland were recovered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Intelligent Transportation System (ITS) is a system that builds a safe, effective and integrated transportation environment based on advanced technologies. Road signs detection and recognition is an important part of ITS, which offer ways to collect the real time traffic data for processing at a central facility.This project is to implement a road sign recognition model based on AI and image analysis technologies, which applies a machine learning method, Support Vector Machines, to recognize road signs. We focus on recognizing seven categories of road sign shapes and five categories of speed limit signs. Two kinds of features, binary image and Zernike moments, are used for representing the data to the SVM for training and test. We compared and analyzed the performances of SVM recognition model using different features and different kernels. Moreover, the performances using different recognition models, SVM and Fuzzy ARTMAP, are observed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents a system to recognise and classify road and traffic signs for the purpose of developing an inventory of them which could assist the highway engineers’ tasks of updating and maintaining them. It uses images taken by a camera from a moving vehicle. The system is based on three major stages: colour segmentation, recognition, and classification. Four colour segmentation algorithms are developed and tested. They are a shadow and highlight invariant, a dynamic threshold, a modification of de la Escalera’s algorithm and a Fuzzy colour segmentation algorithm. All algorithms are tested using hundreds of images and the shadow-highlight invariant algorithm is eventually chosen as the best performer. This is because it is immune to shadows and highlights. It is also robust as it was tested in different lighting conditions, weather conditions, and times of the day. Approximately 97% successful segmentation rate was achieved using this algorithm.Recognition of traffic signs is carried out using a fuzzy shape recogniser. Based on four shape measures - the rectangularity, triangularity, ellipticity, and octagonality, fuzzy rules were developed to determine the shape of the sign. Among these shape measures octangonality has been introduced in this research. The final decision of the recogniser is based on the combination of both the colour and shape of the sign. The recogniser was tested in a variety of testing conditions giving an overall performance of approximately 88%.Classification was undertaken using a Support Vector Machine (SVM) classifier. The classification is carried out in two stages: rim’s shape classification followed by the classification of interior of the sign. The classifier was trained and tested using binary images in addition to five different types of moments which are Geometric moments, Zernike moments, Legendre moments, Orthogonal Fourier-Mellin Moments, and Binary Haar features. The performance of the SVM was tested using different features, kernels, SVM types, SVM parameters, and moment’s orders. The average classification rate achieved is about 97%. Binary images show the best testing results followed by Legendre moments. Linear kernel gives the best testing results followed by RBF. C-SVM shows very good performance, but ?-SVM gives better results in some case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper presents a dynamic programming approach for semi-automated road extraction from medium-and high-resolution images. This method is a modified version of a pre-existing dynamic programming method for road extraction from low-resolution images. The basic assumption of this pre-existing method is that roads manifest as lines in low-resolution images (pixel footprint> 2 m) and as such can be modeled and extracted as linear features. On the other hand, roads manifest as ribbon features in medium- and high-resolution images (pixel footprint ≤ 2 m) and, as a result, the focus of road extraction becomes the road centerlines. The original method can not accurately extract road centerlines from medium- and high- resolution images. In view of this, we propose a modification of the merit function of the original approach, which is carried out by a constraint function embedding road edge properties. Experimental results demonstrated the modified algorithm's potential in extracting road centerlines from medium- and high-resolution images.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Includes bibliography