946 resultados para River spatial complexity
Interpreting spatial complexity of decay features on a sandstone wall: St. Matthew’s Church, Belfast
Resumo:
La recherche porte sur les patrons de distribution longitudinale (amont-aval) et transversale (rive nord - rive sud) des communautés de crustacés planctoniques qui ont été analysés le long du fleuve Saint-Laurent entre le lac Saint-François et la zone de transition estuarienne, à deux hydropériodes en mai (crue) et en août (étiage). Les données zooplanctoniques et environnementales ont été récoltées à 52 stations réparties sur 16 transects transversaux en 2006. Au chapitre 1, nous présentons les principaux modèles écosystémiques en rivière, une synthèse des facteurs influençant le zooplancton en rivières et les objectifs et hypothèses de recherche. Au chapitre 2, nous décrivons la structure des communautés de zooplancton dans trois zones biogéographiques du fleuve et 6 habitats longitudinaux, ainsi que les relations entre la structure du zooplancton et la distribution spatiale des masses d’eau et les variables environnementales. Au chapitre 3, nous réalisons une partition de la variation des variables spatiales AEM (basées sur la distribution des masses d’eau) et des variables environnementales pour évaluer quelle part de la variation du zooplancton est expliquée par les processus hydrologiques (variables AEM) et les conditions locales (facteurs environnementaux). Le gradient salinité-conductivité relié à la discontinuité fleuve-estuaire a déterminé la distribution à grande échelle du zooplancton. Dans les zones fluviales, la distribution du zooplancton est davantage influencée par la distribution des masses d’eau que par les facteurs environnementaux locaux. La distribution des masses d’eau explique une plus grande partie de la variation dans la distribution du zooplancton en août qu’en mai.
Resumo:
Catchment and riparian degradation has resulted in declining ecosystem health of streams worldwide. With restoration a priority in many regions, there is an increasing interest in the scale at which land use influences stream ecosystem health. Our goal was to use a substantial data set collected as part of a monitoring program (the Southeast Queensland, Australia, Ecological Health Monitoring Program data set, collected at 116 sites over six years) to identify the spatial scale of land use, or the combination of spatial scales, that most strongly influences overall ecosystem health. In addition, we aimed to determine whether the most influential scale differed for different aspects of ecosystem health. We used linear-mixed models and a Bayesian model-averaging approach to generate models for the overall aggregated ecosystem health score and for each of the five component indicators (fish, macroinvertebrates, water quality, nutrients, and ecosystem processes) that make up the score. Dense forest close to the survey site, mid-dense forest in the hydrologically active nearstream areas of the catchment, urbanization in the riparian buffer, and tree cover at the reach scale were all significant in explaining ecosystem health, suggesting an overriding influence of forest cover, particularly close to the stream. Season and antecedent rainfall were also important explanatory variables, with some land-use variables showing significant seasonal interactions. There were also differential influences of land use for each of the component indicators. Our approach is useful given that restoring general ecosystem health is the focus of many stream restoration projects; it allowed us to predict the scale and catchment position of restoration that would result in the greatest improvement of ecosystem health in the regions streams and rivers. The models we generated suggested that good ecosystem health can be maintained in catchments where 80% of hydrologically active areas in close proximity to the stream have mid-dense forest cover and moderate health can be obtained with 60% cover.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Good estimates of ecosystem complexity are essential for a number of ecological tasks: from biodiversity estimation, to forest structure variable retrieval, to feature extraction by edge detection and generation of multifractal surface as neutral models for e.g. feature change assessment. Hence, measuring ecological complexity over space becomes crucial in macroecology and geography. Many geospatial tools have been advocated in spatial ecology to estimate ecosystem complexity and its changes over space and time. Among these tools, free and open source options especially offer opportunities to guarantee the robustness of algorithms and reproducibility. In this paper we will summarize the most straightforward measures of spatial complexity available in the Free and Open Source Software GRASS GIS, relating them to key ecological patterns and processes.
Resumo:
A survey was carried out on the fish species in the Sorocaba River basin, the main tributary of the left margin of the Tietê River, located in the State of São Paulo, Brazil. The species were collected with gill nets. After identification of the specimens, their relative abundance, weight and standard length were determined. Up to the present moment there are not any studies that focus this subject in this hydrographic basin. Fifty-three species, distributed in eighteen families and six orders were collected. Characiformes were represented by twenty-eight species, Siluriformes by seventeen species, the Gymnotiformes by three species, Perciformes and Cyprinodontiformes by two species, and the Synbranchiformes by one species. Among the collected species there were two exotic. The most abundant species were Astyanax fasciatus and Hypostomus ancistroides. In relation to total weight the most representative species were Hoplias malabaricus and Hypostomus ancistroides. Cyprinus carpio, Prochilodus lineatus, Schizodon nasutus and Hoplias malabaricus were the most representative species in relation to average weight. Largest standard length were recorded for Sternopygus macrurus, Steindachnerina insculpta, Eigenmannia off. virescens and Cyprinus carpio.
Resumo:
Ungulates are important components of a variety of ecosystems worldwide. This dissertation integrates aspects of ungulate and forest ecology to increase our understanding of how they work together in ways that are of interest to natural resource managers, educators, and those who are simply curious about nature. Although animal ecology and ecosystem ecology are often studied separately, one of the general goals of this dissertation is to examine how they interact across spatial and temporal scales. Forest ecosystems are heterogeneous across a range of scales. Spatial and temporal habitat use patterns of forest ungulates tend to be congregated in patches where food and/or cover are readily available. Ungulates interact with ecosystem processes by selectively foraging on plants and excreting waste products in concentrated patches. Positive feedbacks may develop where these activities increase the value of habitat through soil fertilization or the alteration of plant chemistry and architecture. Heterogeneity in ecosystem processes and plant community structure, observed at both stand and local scales, may be the integrated outcome of feedbacks between ungulate behavior and abiotic resource gradients. The first chapter of this dissertation briefly discusses pertinent background information on ungulate ecology, with a focus on white-tailed deer (Odocoileus virginianus) in the Upper Great Lakes region and moose (Alces acles) in Isle Royale National Park, Michigan, USA. The second chapter demonstrates why ecological context is important for studying ungulate ecology in forest ecosystems. Excluding deer from eastern hemlock (Tsuga canadensis) stands, which deer use primarily as winter cover, resulted in less spatial complexity in soil reactive nitrogen and greater complexity in diffuse light compared to unfenced stands. The spatial patterning of herbaceous-layer cover was more similar to nitrogen where deer were present, and was a combination of nitrogen and light within deer exclosures. This relationship depends on the seasonal timing of deer habitat use because deer fertilize the soil during winter, but leave during the growing season. The third chapter draws upon an eight-year, 39-stand data set of deer fecal pellet counts in hemlock stands to estimate the amount of nitrogen that deer are depositing in hemlock stands each winter. In stands of high winter deer use, deer-excreted nitrogen inputs consistently exceeded those of atmospheric deposition at the stand scale. At the neighborhood scale, deer-excreted nitrogen was often in excess of atmospheric deposition due to the patchy distribution of deer habitat use. Spatial patterns in habitat use were consistent over the eight-year study at both stand and neighborhood scales. The fourth chapter explores how foraging selectivity by moose interacts with an abiotic resource gradient to influence forest structure and composition. Soil depth on Isle Royale varies from east to west according to glacial history. Fir saplings growing in deeper soils on the west side are generally more palatable forage for moose (lower foliar C:N) than those growing in shallower soils on the east side. Therefore, saplings growing in better conditions are less likely to reach the canopy due to moose browsing, and fir is a smaller overstory component on the west side. Lastly, chapter five focuses on issues surrounding eastern hemlock regeneration failure, which is a habitat type that is important to many wildlife species. Increasing hemlock on the landscape is complicated by several factors including disturbance regime and climate change, in addition to the influence of deer.
Resumo:
The spatial complexity of the distribution of organic matter, chemicals, nutrients, pollutants has been demonstrated to have multifractal nature (Kravchenco et al. [1]). This fact supports the possibility of existence of some emergent heterogeneity structure built under the evolution of the system. The aim of this note is providing a consistent explanation to the mentioned results via an extremely simple model.
Resumo:
Thesis (Ph.D.)--University of Washington, 2016-06
Resumo:
To remain competitive, many agricultural systems are now being run along business lines. Systems methodologies are being incorporated, and here evolutionary computation is a valuable tool for identifying more profitable or sustainable solutions. However, agricultural models typically pose some of the more challenging problems for optimisation. This chapter outlines these problems, and then presents a series of three case studies demonstrating how they can be overcome in practice. Firstly, increasingly complex models of Australian livestock enterprises show that evolutionary computation is the only viable optimisation method for these large and difficult problems. On-going research is taking a notably efficient and robust variant, differential evolution, out into real-world systems. Next, models of cropping systems in Australia demonstrate the challenge of dealing with competing objectives, namely maximising farm profit whilst minimising resource degradation. Pareto methods are used to illustrate this trade-off, and these results have proved to be most useful for farm managers in this industry. Finally, land-use planning in the Netherlands demonstrates the size and spatial complexity of real-world problems. Here, GIS-based optimisation techniques are integrated with Pareto methods, producing better solutions which were acceptable to the competing organizations. These three studies all show that evolutionary computation remains the only feasible method for the optimisation of large, complex agricultural problems. An extra benefit is that the resultant population of candidate solutions illustrates trade-offs, and this leads to more informed discussions and better education of the industry decision-makers.
Resumo:
Sedimentos em suspensão representam um dos principais fatores que afetam a qualidade dos sistemas aquáticos no mundo; influenciam os processos geomórficos de construção da paisagem e podem indicar problemas de erosão e perda de solo na bacia hidrográfica contribuinte. O seu monitoramento espacial e temporal é fundamental nas atividades de gestão ambiental de áreas costeiras. Nesse sentido, a hipótese básica desta pesquisa é que o padrão espacial e temporal de plumas de sedimentos costeiras associado ao regime hidrológico do rio pode ser caracterizado a partir de imagens orbitais de média resolução espacial. Para comprová-la, elegeu-se a foz do rio Paraíba do Sul como área de estudo para definição e teste metodológico, e formulou-se como principal objetivo mapear qualitativamente a pluma costeira deste rio a partir de imagens Landsat 5 e CBERS-2, ao longo do período compreendido entre 1985 e 2007. As datas avaliadas foram criteriosamente definidas através de três estratégias de análise, totalizando cinqüenta imagens. Pesquisa bibliográfica e avaliação da resposta espectral da feição de interesse nas imagens selecionadas consistiram nas etapas principais da definição da metodologia. As plumas foram então identificadas, mapeadas e extraídas; posteriormente, suas características espaciais e temporais foram analisadas por intermédio de sistemas de informação geográfica e avaliadas em conjunto com dados históricos de vazão. Os resultados indicam que a banda do vermelho forneceu uma melhor discriminação interna da pluma, sendo, portanto, utilizada como base para as análises realizadas neste trabalho. Com exceção do procedimento de correção atmosférica, a metodologia proposta consiste na utilização de técnicas simples de processamento digital de imagens, baseadas na integração de técnicas semi-automáticas e de análise visual. A avaliação do padrão dos sedimentos e dos mapas temáticos qualitativos de concentração de sedimentos em suspensão indica a forte diferenciação existente entre cenários representativos de épocas de cheia e seca do rio. Análises espaciais do comportamento da pluma contribuem ainda para um maior conhecimento do espaço geográfico, fornecendo subsídios aos mais variados setores do planejamento e gestão ambiental.
Resumo:
Our study of a novel technique for adaptive image sequence coding is reported. The number of reference frames and the intervals between them are adjusted to improve the temporal compensability of the input video. The bits are distributed more efficiently on different frame types according to temporal and spatial complexity of the image scene. Experimental results show that this dynamic group-of-picture (GOP) structure coding scheme is not only feasible but also better than the conventional fixed GOP method in terms of perceptual quality and SNR. (C) 1996 Society of Photo-Optical Instrumentation Engineers.