987 resultados para Right ventricular dysfunction
Resumo:
Background: Chronic mountain sickness (CMS) is characterized by exaggerated exercise-induced pulmonary hypertension. Evidences suggests that exercise may cause lung fluid accumulation at high altitude. We hypothesized that, in patients with CMS, exercise causes lung fluid accumulation.Methods: In 21 male CMS patients and 20 matched healthy controls born and permanently living in La Paz (Bolivia, 3600m) we assessed with echocardiogram, pulmonary artery pressure (PASP), right and left ventricular function and ultrasoundlung comets (ULCs, a marker of lung fluid accumulation) at rest and during mild bicycle exercise (10 min at 50W).Results: CMS patients presented a more than 2-fold greater exercise-induced increase in pulmonary artery pressure than controls (17.1±8.3 vs 7.2±7.9 mmHg, P=0.003). This exaggerated PASP response to exercise was associated with a roughly 3-fold greater increase in UCLs in patients with CMS than in controls (6.3±5.1 vs. 2.1±5.3, p<0.05), and there existed a significant relationship between PASP and UCLs (r=0.44, p<0.001). Finally, TDI on lateral tricuspid annulus decreased during exercise in patients with CMS (from 13.2±3.2 to 11.5±2.1 cm s-1, p=0.03), but increased in controls (from 13.1±2.9 to 14.9±2.6 cm s-1 , p=0.04). Left ventricular function remained unaltered in the 2 groups.Conclusions: we provide the first direct evidence in CMS patients that exaggerated exercise-induced pulmonary hypertension causes rapid lung fluid accumulation and right ventricular dysfunction. We speculate that in patients with CMS these two phenomena contribute to reduced exercise performances and Figure 1 increased cardiovascular morbidity and mortality that characterise these subjects.
Resumo:
Forty-six consecutive patients with pulmonary embolism (PE) who underwent pulmonary angiography, helical computed tomography (CT), and echocardiography in the investigators' emergency department were studied. It was determined that the CT right ventricular (RV)/left ventricular (LV) end-diastolic area ratio was correlated with PE obstruction and echocardiography. A CT RV/LV area ratio >1 had a sensitivity of 88% and a specificity of 88% in diagnosing significant PE. The present study suggests that helical CT may be used as a triage tool in acute PE for selecting high-risk patients, using calculation of the RV/LV area ratio to detect RV dysfunction.
Resumo:
Assisted reproductive technologies (ART) predispose the offspring to vascular dysfunction, arterial hypertension, and hypoxic pulmonary hypertension. Recently, cardiac remodeling and dysfunction during fetal and early postnatal life have been reported in offspring of ART, but it is not known whether these cardiac alterations persist later in life and whether confounding factors contribute to this problem. We, therefore, assessed cardiac function and pulmonary artery pressure by echocardiography in 54 healthy children conceived by ART (mean age 11.5 ± 2.4 yr) and 54 age-matched (12.2 ± 2.3 yr) and sex-matched control children. Because ART is often associated with low birth weight and prematurity, two potential confounders associated with cardiac dysfunction, only singletons born with normal birth weight at term were studied. Moreover, because cardiac remodeling in infants conceived by ART was observed in utero, a situation associated with increased right heart load, we also assessed cardiac function during high-altitude exposure, a condition associated with hypoxic pulmonary hypertension-induced right ventricular overload. We found that, while at low altitude cardiac morphometry and function was not different between children conceived by ART and control children, under the stressful conditions of high-altitude-induced pressure overload and hypoxia, larger right ventricular end-diastolic area and diastolic dysfunction (evidenced by lower E-wave tissue Doppler velocity and A-wave tissue Doppler velocity of the lateral tricuspid annulus) were detectable in children and adolescents conceived by ART. In conclusion, right ventricular dysfunction persists in children and adolescents conceived by ART. These cardiac alterations appear to be related to ART per se rather than to low birth weight or prematurity.
Resumo:
BACKGROUND: There is considerable interindividual variability in pulmonary artery pressure among high-altitude (HA) dwellers, but the underlying mechanism is not known. At low altitude, a patent foramen ovale (PFO) is present in about 25% of the general population. Its prevalence is increased in clinical conditions associated with pulmonary hypertension and arterial hypoxemia, and it is thought to aggravate these problems. METHODS: We searched for a PFO (transesophageal echocardiography) in healthy HA dwellers (n = 22) and patients with chronic mountain sickness (n = 35) at 3,600 m above sea level and studied its effects (transthoracic echocardiography) on right ventricular (RV) function, pulmonary artery pressure, and vascular resistance at rest and during mild exercise (50 W), an intervention designed to further increase pulmonary artery pressure. RESULTS: The prevalence of PFO (32%) was similar to that reported in low-altitude populations and was not different in participants with and without chronic mountain sickness. Its presence was associated with RV enlargement at rest and an exaggerated increase in right-ventricular-to-right-atrial pressure gradient (25 ± 7 mm Hg vs 15 ± 9 mm Hg, P < .001) and a blunted increase in fractional area change of the right ventricle (3% [-1%, 5%] vs 7% [3%, 16%], P = .008) during mild exercise. CONCLUSIONS: These findings show, we believe for the first time, that although the prevalence of PFO is not increased in HA dwellers, its presence appears to facilitate pulmonary vasoconstriction and RV dysfunction during a mild physical effort frequently associated with daily activity. TRIAL REGISTRY: ClinicalTrials.gov; No.: NCT01182792; URL: www.clinicaltrials.gov.
Resumo:
Pulmonary thromboembolism (PTE) ranges from incidental, clinically unimportant thromboembolism to massive embolism with sudden death. Its treatment is well established in two groups of patients: heparin for those with normal systemic blood pressure without right ventricular dysfunction (RVD) and thrombolysis for those with RVD and circulatory shock. In an intermediate group of patients with systemic blood pressure stability combined with RVD, which is usually associated with worse outcome, the treatment is controversial. There are authors who strongly suggest thrombolysis while others contraindicate this procedure and recommend anticoagulation with heparin. This is a narrative review that includes clinical trials comparing thrombolysis and heparin for the treatment of PTE patients with systemic blood pressure stability and RVD published since 1973. The results show that there are only four trials on this subject with less than 500 patients. Many PTE patients with systemic blood pressure stability and RVD might benefit from thrombolysis but, on the other hand, the risk for hemorrhagic events may be increased. Large randomized clinical trials are required to clarify this. © 2008 Bentham Science Publishers Ltd.
Resumo:
BACKGROUND There is considerable interindividual variability in pulmonary artery pressure among high-altitude (HA) dwellers, but the underlying mechanism is not known. At low altitude, a patent foramen ovale (PFO) is present in about 25% of the general population. Its prevalence is increased in clinical conditions associated with pulmonary hypertension and arterial hypoxemia, and it is thought to aggravate these problems. METHODS We searched for a PFO (transesophageal echocardiography) in healthy HA dwellers (n = 22) and patients with chronic mountain sickness (n = 35) at 3,600 m above sea level and studied its effects (transthoracic echocardiography) on right ventricular (RV) function, pulmonary artery pressure, and vascular resistance at rest and during mild exercise (50 W), an intervention designed to further increase pulmonary artery pressure. RESULTS The prevalence of PFO (32%) was similar to that reported in low-altitude populations and was not different in participants with and without chronic mountain sickness. Its presence was associated with RV enlargement at rest and an exaggerated increase in right-ventricular-to-right-atrial pressure gradient (25 ± 7 mm Hg vs 15 ± 9 mm Hg, P < .001) and a blunted increase in fractional area change of the right ventricle (3% [-1%, 5%] vs 7% [3%, 16%], P = .008) during mild exercise. CONCLUSIONS These findings show, we believe for the first time, that although the prevalence of PFO is not increased in HA dwellers, its presence appears to facilitate pulmonary vasoconstriction and RV dysfunction during a mild physical effort frequently associated with daily activity. TRIAL REGISTRY ClinicalTrials.gov; No.: NCT01182792; URL: www.clinicaltrials.gov.
Resumo:
Assisted reproductive technologies (ART) predispose the offspring to vascular dysfunction, arterial hypertension, and hypoxic pulmonary hypertension. Recently, cardiac remodeling and dysfunction during fetal and early postnatal life have been reported in offspring of ART, but it is not known whether these cardiac alterations persist later in life and whether confounding factors contribute to this problem. We, therefore, assessed cardiac function and pulmonary artery pressure by echocardiography in 54 healthy children conceived by ART (mean age 11.5 ± 2.4 yr) and 54 age-matched (12.2 ± 2.3 yr) and sex-matched control children. Because ART is often associated with low birth weight and prematurity, two potential confounders associated with cardiac dysfunction, only singletons born with normal birth weight at term were studied. Moreover, because cardiac remodeling in infants conceived by ART was observed in utero, a situation associated with increased right heart load, we also assessed cardiac function during high-altitude exposure, a condition associated with hypoxic pulmonary hypertension-induced right ventricular overload. We found that, while at low altitude cardiac morphometry and function was not different between children conceived by ART and control children, under the stressful conditions of high-altitude-induced pressure overload and hypoxia, larger right ventricular end-diastolic area and diastolic dysfunction (evidenced by lower E-wave tissue Doppler velocity and A-wave tissue Doppler velocity of the lateral tricuspid annulus) were detectable in children and adolescents conceived by ART. In conclusion, right ventricular dysfunction persists in children and adolescents conceived by ART. These cardiac alterations appear to be related to ART per se rather than to low birth weight or prematurity.
Resumo:
OBJECTIVES The purpose of this research was to identify the determinants of right ventricular (RV) dysfunction in overweight and obese subjects. BACKGROUND Right ventricular dysfunction in obese subjects is usually ascribed to comorbid diseases, especially obstructive sleep apnea. We used tissue Doppler imaging to identify the determinants of RV dysfunction in overweight and obese subjects. METHODS Standard and tissue Doppler echocardiography was performed in 112 overweight (body mass index [BMI] 25 to 29.9 kg/m(2)) or obese (BMI >30 kg/m(1)) subjects and 36 referents (BMI 35 kg/m(2) had reduced RV function compared with referent subjects, evidenced by reduced s(m) (6.5 +/- 2.4 cm/s vs. 10.2 +/- 1.5 cm/s, p < 0.001), peak strain (-21 +/- 4% vs. -28 +/- 4%, p < 0.001), peak strain rate (-1.4 +/- 0.4 s(-1) vs. -2.0 +/- 0.5 s(-1), p < 0.001), and e(m) (6.8 +/- 2.4 cm/s vs. -10.3 +/- 2.5 cm/s, p < 0.001), irrespective of the presence of sleep apnea. Similar but lesser degrees of reduced systolic function (p < 0.05) were present in overweight (BMI 25 to 29.9 kg/m(2)) and mildly obese (BMI 30 to 35 kg/m(2)) groups. Differences in RV e(m), s(m), and strain indexes were demonstrated between the severely versus overweight and mildly obese groups (p < 0.05). Body mass index remained independently related to RV changes after adjusting for age, log insulin, and mean arterial pressures. In obese patients, these changes were associated with reduced exercise capacity but not the duration of obesity and presence of sleep apnea or its severity. CONCLUSIONS Increasing BMI is associated with increasing severity of RV dysfunction in overweight and obese subjects without overt heart disease, independent of sleep apnea.
Resumo:
OBJECTIVE: To assess right ventricular diastolic function in the intermediate postoperative period of repair of tetralogy of Fallot. METHODS: We carried out a case-control study with 60 patients divided into 2 groups as follows: 1) group I - 30 patients who had undergone repair of tetralogy of Fallot and 2) group II - 30 healthy children. The 2 groups were paired for age, sex, and body surface. The flows in the pulmonary and tricuspid valves were analyzed with Doppler echocardiography. The presence of anterograde flow at the end of diastole in the pulmonary artery defined restrictive right ventricular physiology. Surgical, radiological, electrocardiographic, and echocardiographic variables were analized in the group I. RESULTS: The velocity of the A wave and the E/A ratio for the tricuspid valve showed significant differences between the groups. Cases with E/A < 1.30 predominated in inspiration (group I - 19/30, and group II - 5/30). The duration of the QRS complex on the electrocardiogram was significantly increased in patients with E/A <1.30. Nineteen (63.3%) patients had restrictive right ventricular physiology, which had a longer postoperative period, longer duration of the QRS complex, and a lower E/A ratio in inspiration. The surgical and radiological variables showed no statistical difference. CONCLUSION: Restrictive right ventricular physiology was detected on the intermediate follow-up of most patients undergoing repair of tetralogy of Fallot. The postoperative period and QRS duration were increased in patients with impairment in diastolic function.
Resumo:
BACKGROUND: Although arrhythmogenic right ventricular dysplasia (ARVD) predominantly affects the right ventricle (RV), genetic/molecular and histological changes are biventricular. Regional left ventricular (LV) function has not been systematically studied in ARVD. METHODS AND RESULTS: The study population included 21 patients with suspected ARVD who underwent evaluation with MRI including tagging. Eleven healthy volunteers served as control subjects. Peak systolic regional circumferential strain (Ecc, %) was calculated by harmonic phase from tagged MRI based on the 16-segment model. Patients who met ARVD Task Force criteria were classified as definite ARVD, whereas patients with a positive family history who had 1 additional minor criterion and patients without a family history with 1 major or 2 minor criteria were classified as probable ARVD. Of the 21 ARVD subjects, 11 had definite ARVD and 10 had probable ARVD. Compared with control subjects, probable ARVD patients had similar RV ejection fraction (58.9+/-6.2% versus 53.5+/-7.6%, P=0.20), but definite ARVD patients had significantly reduced RV ejection fraction (58.9+/-6.2% versus 45.2+/-6.0%, P=0.001). LV ejection fraction was similar in all 3 groups. Compared with control subjects, peak systolic Ecc was significantly less negative in 6 of 16 (37.5%) segments in definite ARVD and 3 of 16 segments (18.7%) in probable ARVD (all P<0.05). CONCLUSIONS: ARVD is associated with regional LV dysfunction, which appears to parallel degree of RV dysfunction. Further large studies are needed to validate this finding and to better define implications of subclinical segmental LV dysfunction.