66 resultados para Rifte


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Baixo Vermelho area, situated on the northern portion of Umbuzeiro Graben (onshore Potiguar Basin), represents a typical example of a rift basin, characterized, in subsurface, by the sedimentary rift sequence, correlated to Pendência Formation (Valanginian-Barremian), and by the Carnaubais fault system. In this context, two main goals, the stratigraphic and the structural analysis, had guided the research. For this purpose, it was used the 3D seismic volume and eight wells located in the study area and adjacencies. The stratigraphic analysis of the Valanginian-Barremian interval was carried through in two distinct phases, 1D and 2D, in which the basic concepts of the sequence stratigraphy had been adapted. In these phases, the individual analysis of each well and the correlation between them, allowed to recognize the main lithofacies, to interpret the effective depositional systems and to identify the genetic units and key-surfaces of chronostratigraphic character. The analyzed lithofacies are represented predominantly by conglomerates, sandstones, siltites and shales, with carbonate rocks and marls occurring subordinately. According to these lithofacies associations, it is possible to interpret the following depositional systems: alluvial fan, fluvio-deltaic and lacustrine depositional systems. The alluvial fan system is mainly composed by conglomerates deposits, which had developed, preferentially in the south portion of the area, being directly associated to Carnaubais fault system. The fluvial-deltaic system, in turn, was mainly developed in the northwest portion of the area, at the flexural edge, being characterized by coarse sandstones with shales and siltites intercalated. On the other hand, the lacustrine system, the most dominant one in the study area, is formed mainly by shales that could occur intercalated with thin layers of fine to very fine sandstones, interpreted as turbidite deposits. The recognized sequence stratigraphy units in the wells are represented by parasequence sets, systems tracts and depositional sequences. The parasequence sets, which are progradational or retrogradational, had been grouped and related to the systems tracts. The predominance of the progradation parasequence sets (general trend with coarsening-upward) characterizes the Regressive Systems Tract, while the occurrence, more frequently, of the retrogradation parasequence sets (general trend with finning-upward) represents the Transgressive System Tract. In the seismic stratigraphic analysis, the lithofacies described in the wells had been related to chaotic, progradational and parallel/subparallel seismic facies, which are associated, frequently, to the alluvial fans, fluvial-deltaic and lacustrine depositional systems, respectively. In this analysis, it was possible to recognize fifteen seismic horizons that correspond to sequence boundaries and to maximum flooding surfaces, which separates Transgressive to Regressive systems tracts. The recognition of transgressive-regressive cycles allowed to identify nine, possibly, 3a order deposicional sequences, related to the tectonic-sedimentary cycles. The structural analysis, in turn, was done at Baixo Vermelho seismic volume, which shows, clearly, the structural complexity printed in the area, mainly related to Carnaubais fault system, acting as an important fault system of the rift edge. This fault system is characterized by a main arrangement of normal faults with trend NE-SO, where Carnaubais Fault represents the maximum expression of these lineations. Carnaubais Fault corresponds to a fault with typically listric geometry, with general trend N70°E, dipping to northwest. It is observed, throughout all the seismic volume, with variations in its surface, which had conditioned, in its evolutive stages, the formation of innumerable structural features that normally are identified in Pendencia Formation. In this unit, part of these features is related to the formation of longitudinal foldings (rollover structures and distentional folding associated), originated by the displacement of the main fault plan, propitiating variations in geometry and thickness of the adjacent layers, which had been deposited at the same time. Other structural features are related to the secondary faultings, which could be synthetic or antithetic to Carnaubais Fault. In a general way, these faults have limited lateral continuity, with listric planar format and, apparently, they play the role of the accomodation of the distentional deformation printed in the area. Thus, the interaction between the stratigraphic and structural analysis, based on an excellent quality of the used data, allowed to get one better agreement on the tectonicsedimentary evolution of the Valanginian-Barremian interval (Pendência Formation) in the studied area

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Through an integrated approach, using litho, chrono and biostratigraphic data, the relative importance of climate variations and tectonics were recognized in rift sediments of the onshore Potiguar Basin, Northeast Brazil. Concepts of sequence stratigraphy were applied as a template to integrate sedimentological and geochemical data (oxygen isotopes), as well as quantitative palynologic methods to address and recognize the main depositional patterns produced in a rift basin. The main objective was to address the relative importance of climate changes and tectonics to the resultant stratigraphic architecture. The results of computer simulations of sedimentary basin fills of rift basins were quite useful to test working hypothesis and mimic the process of filling a half graben during a rift event. The studied section includes a neovalanginian-eobarremian (Lower Cretaceous) rift interval from the Pendência Formation, located in the southwestern portion of Umbuzeiro Graben, in the offshore Potiguar Basin. The depositional setting is interpreted as progradational deltaic system entering a lake from its flexural margin. Sismoestratigraphyc and well logs analyses allowed to interpret two regressive intervals (Green and Yellow Sequences), separated by a broad transgressive interval (Orange Sequence), known as the Livramento Shale. The depositional history encompass three stages: two tectonically active phases, during the deposition of the Green and Yellow Sequences, and a tectonically quiescent phase, during the deposition of the Orange Sequence. Paleoclimatic interpretation, based on quantitative palynology and geochemical data (��18O), suggests a tendency to arid conditions during the tectonically active phases and wet conditions during the tectonically quiescent phase. Stratigraphic modeling and backstripping techniques, supported by paleoclimatic/paleoecologic interpretations provide a powerful methodology to evaluate the tectonic and climatic controls on tectonic lakes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A complex depositional history, related to Atlantic rifting, demonstrates the geological evolution during the late Jurassic and early Neocomian periods in the Araripe Basin NE Brazil. Based on outcrop, seismic and remote sensing data, a new model of the tectono-stratigraphic evolution of the section that covers the stages Dom João, Rio da Serra and Aratu (Brejo Santo, Missão Velha and Abaiara formations) is presented in this paper. In the stratigraphic section studied, ten sedimentary facies genetically linked to nine architectural elements were described, representing depositional systems associated with fluvial, aeolian and deltaic environments. Based on the relationship between the rates of creation of accommodation space and sediment influx (A / S) it was possible to associate these depositional systems with High and Low accommodation system tracks. These system tracks represent two tectono-sequences, separated by regional unconformities. The Tectono-sequence I, which includes lithotypes from the Brejo Santo Formation and is related to the pre-rift stage, is bounded at the base by the Paleozoic unconformity. This unit represents only a High Accommodation System Track, composed by a succession of pelitic levels interbedded with sandstones and limestones, from a large fluvial floodplain origin, developed under arid climatic conditions. The Tectono-sequence II, separated from the underlying unit by an erosional unconformity, is related to the rift stage, and is composed by the Missão Velha and Abaiara Formation lithotypes. Changes in depositional style that reflect variations in the A / S ratio, and the presence of hydroplastic deformation bands, make it possible to divide this tectonosequence into two internal sequences. Sequence IIA, which includes the lower portion of the Missão Velha Formation and sequence IIB, is composed by the upper section of the Missão Velha and Abaiara Formations The Sequence IIA below, composed only by the Low Accommodation System Track, includes crossbedding sandstones interbedded with massive mudstones, which are interpreted as deposits of sandy gravel beds wandering rivers. Sequence IIB, above, is more complex, showing a basal Low Accommodation System Track and a High Accommodation System Track at the top, separated by an expansion surface. The lower System Track, related to the upper portion of the Missão Velha Formation, is composed by a series of amalgamated channels, separated by erosion surfaces, interpreted as deposits of a belt of braided channels. The High Accommodation System Track, correlated with the Abaiara Unit, is marked by a significant increase in the A / S, resulting in the progradation of a system of braided river deltas with aeolic influence. Regarding tectonic evolution, the stratigraphic study indicates that the Tectonosequence Rift in the Araripe basin was developed in two phases: first characterized by a beginning of rifting, related to Sequence IIA, followed by a phase of syndepositional deformation, represented by sequence IIB. The first phase was not influenced by the development of large faults, but was influenced by a sharp and continuous decrease of accommodation space that permitted a change in depositional patterns, establishing a new depositional architecture. In turn, the stage of syndepositional deformation allowed for the generation of enough accommodation space for the preservation of fluvial-lacustrine deposits and conditioned the progradation of a braided river-dominated delta system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Palestina Graben is one of the NE-trending asymmetric grabens of the Araripe Basin. This basin rests on the precambrian terrains of the Transversal Zone, Borborema Province, immediately to the south of the Patos Lineament. It is part of the Interior Basins province of Northeastern Brazil, being related to the fragmentation of the Gondwana supercontinent and the opening of the South Atlantic ocean. The Palestina Graben trends NE-SW and presents an asymmetric geometry, controled by the NW extensional eocretaceous strain. The graben borders display distinct geometries. The SE border is a flexural margin, characterized by the non conformity of the eopaleozoic Mauriti Formation (the oldest unit of the basin) overlying the crystalline basement, but also affected by normal faults with small displacements. On the opposite, the NW border is continuous and rectilinear, being marked by normal faults with major displacements, that control the general tilting of the layers to the NW. In this sense, the Mauriti Formation is overlain by the Brejo Santo, Missão Velha (which also occurs in the Brejo Santo-Mauriti horst, to the NW of the fault border) and Abaiara formations, the latter restricted to the graben. The interpretation of available gravity data and a seismic line indicates that the main fault has a variable dip slip component, defining two deeper portions within the graben, in which the sedimentary column can reach thicknesses of up to 2 km. Regarding to the stratigraphy of Araripe Basin in the study area, the sedimentary package includes three distinct tectonosequences. The Paleozoic Syneclisis Tectonosequence is composed by the Mauriti Formation, deposited by a braided fluvial system. The Jurassic Tectonosequence, whose tectonic setting is still debatable (initial stage of the Neocomian rift, or a pre-rift syneclisis ?), is represented by the Brejo Santo Formation, originated in a distal floodplain related to ephemeral drainages. The Rift Tectonosequence, of neocomian age, includes the Missão Velha Formation, whose lower section is related to a braided to meandering fluvial system, outlining the Rift Initiation Tectonic Systems Tract. The upper section of the Missão Velha Formation is separated from the latter by a major unconformity. This interval was originated by a braided fluvial system, overlain by the Abaiara Formation, a deltaic system fed by a meandering fluvial system. Both sections correspond to the Rift Climax Tectonic Systems Tract. In the area, NE-trending normal to oblique faults are associated with NW transfer faults, while ENE to E-W faults display dominant strike slip kinematics. Both NE and E-W fault sets exhibit clear heritage from the basement structures (in particular, shear zones), which must have been reactivated during the eocretaceous rifting. Faults with EW trends display a dominant sinistral shear sense, commonly found along reactivated segments of the Patos Lineament and satellyte structures. Usually subordinate, dextral directional movements, occur in faults striking NNW to NE. Within this framework bearing to the Palestina Graben, classical models with orthogonal extension or pull-apart style deserve some caution in their application. The Palestina Graben is not limited, in its extremeties, by E-W transcurrent zones (as it should be in the case of the pull-apart geometry), suggesting a model close to the classic style of orthogonal opening. At the same time, others, adjacent depocenters (like the Abaiara-Jenipapeiro semi-graben) display a transtensional style. The control by the basement structures explains such differences

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Araripe Basin is located over Precambrian terrains of the Borborema Province, being part of Northeast Brazil inner basins. Its origin is related to the fragmentation of the Gondwana supercontinent and consequently opening of South Atlantic during early Cretaceous. The basin has a sedimentary infill encompassing four distinct evolution stages, comprising Paleozoic syneclisis, pre-rift, rift and post-rift. The target of this study comprises the post-rift section of the basin focusing deformational styles which affect evaporates from Ipubi Member of the Santana Formation, which is composed by gypsum and anidrite layers interbedded with shales. These units occur widespread across the basin. In the central part of the basin, near Nova Olinda-Santana do Cariri, evaporites are affected by an essentialy brittle deformation tipified by fibrous gypsum filled fractures, cutting massive layers of gypsum and anidrite. Veins with variable orientations and dips are observed in the region distributed over three main populations: i) a dominant NWSE with shallow to moderate NE dipping population, consisting of gypsum filled veins in which fibers are normal to vein walls; i) NE-SW veins with moderate SE dips containing subhorizontal growth fibers; and iii) N-S veins with shallow E-W dips with fibers oblique to vein walls. In the west portion of the basin, near Trindade-Ipubi-Araripina towns, evaporate layers are dominantly constituted by gypsum/anidrite finely stratified, showing a minor density of veins. These layers are affected by a unique style of deformation, more ductile, typified by gentle to open horizontal normal folding with several tens of meters length and with double plunging NW-SE or NE-SW hinges, configuring domic features. In detail, gypsum/anidrite laminae are affected by metre to decimeter scale close to tight folding, usually kinked, with broken hinges, locally turning into box folds. Veins show NE-SW main directions with shallow NE dips, growth fibers are parallel to vein walls, constituting slickenfibers. This region is marked by faults that affect Araripina Formation with NW-SE, NE-SW and E-W directions. The main structural styles and general orientations of structures which affected the post-rift section of Araripe Basin yielded important kinematic information analysis which led us to infer a E-W to NE-SW extension direction to the northeastern part of the Basin, whereas in the southeastern part, extension occurred in N-S direction. Thus, it was possible to determine a regional kinematic setting, through this analysis, characterizing a NE-SW to ENE-WSW system for the post-rift section, which is compatible with the tension settings for the Sout American Plate since Albian. Local variations at the fluid pressure linked (or not) to sedimentary overload variation define local tension settings. This way, at the northeastern portion of the basin, the post-rift deformation was governed by a setting which σ 1 is sub-horizontal trending NE-SW and, σ 3 is sub-vertical, emphasizing a reverse fault situation. At the southwestern portion however there was characterized a strike slip fault setting, featuring σ 1 trending ENEWSW and σ3 trending NNW-SSE

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis presents diagenetic and provenance studies of sandstones belonging to the Rift Tectonosequence of the Rio do Peixe and Araripe basins. These basins are located in the interior of Northeast Brazil aligned along the Trend-Cariri Potiguar. Their origin is related to the Early Cretaceous rifting event. In terms of lithostratigraphy, the studied section corresponds to the Antenor Navarro, Sousa and Rio Piranhas formations of the Rio do Peixe Basin, and the Missão Velha and Abaiara formations of the Araripe Basin, outcropping in the central-west Cariri Valley. A facies analysis was performed and identified nine distinct sedimentary facies for the Rio de Peixe Basin and ten sedimentary facies for the Araripe Basin, individualized according to the different rock types and their sedimentary structures. These facies associations to led paleoenvironments interpretations and their vertical succession allowed understanding the evolution of the depositional setting during the cronostratigraphic interval studied in these basins. Based on petrographic and diagenetic studies it was possible to characterize the texture and mineralogy of these sandstones, identifying their diagenetic stage and the grain framework provenance. The petrographic study allowed to classify the lithotypes studied in both basins as quartzarenites. Such quartzarenites, in general, are rich in quartz, feldspar and lithic fragment grains, and at accessory levels tourmaline, sphene, zircon, epidote and other mineralogy. The diagenetic history of the studied rocks proved to be very complex, being characterized by a variety mineral of phases that succeeded each other during the eo, meso and telodiagenetic stages. According to the studied formation and the textural and compositional aspects of the rocks, some processes were more or less active, while others were even absent. The eodiagenetic stage is marked by mechanical infiltration of clays and early mechanical compactional processes. The mesodiagenetic phase is characterized by continuity of the mechanical compaction and the beggining of chemical compaction, with quartz and feldspar overgrowths, precipitation of kaolinite, alteration of framework grains to chlorite and illite, and finally, precipitation of opaque minerals. The telodiagenetic stage is represented by the oxidation of some grains, matrix and cements. For the provenance analysis of the studied sandstones were used ternary diagrams whose vertices correspond to the percentage of quartz, feldspar and lithic fragments. This study allowed identifies the source area of these rocks as continental blocks. It was also possible, based on the chemical stability and mineralogical maturity of the rocks, recognize that the Antenor Navarro Formation of the Rio do Peixe Basin, and the upper section of the Missão Velha Formation of Araripe Basin have less maturity and stability when compared with the other studied formations

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Deformation bands are structures, developed in porous sandstones, that has small offsets and they are not shown on seismic section. The deformation bands of the pre and synrift sandstones of Araripe Basin were studied in outcrop, macroscopic and microscopic scales. The hierarchical, cinematic and spatial-geometric characteristics, and also the deformational mechanisms acting during its structural evolution were established too. In general, the mesoscopic scale observation allowed to discriminate deformation bands as singles or clusters in three main sets: NNE-SSW dextral; NE-SW normal (sometimes with strike-slip offset); and E-W sinistral; further a bed-parallel deformation bands as a local set. The microscopic characterization allowed to recognize the shearing and cataclastic character of such structures. Through the multi-scale study done in this work we verified that deformation bands analyzed were preferentially developed when sandstones under advanced stage of lithification. We also infer that the geometrical-spatial complexity of these bands, together with the presence of cataclastic matrix, can difficult the migration of fluids in reservoir rocks, resulting on their compartmentalization. Therefore, the study of deformation bands can aid researches about the structural evolution of sedimentary basin, as well as collaborate to understand the hydrodynamic behavior of reservoirs compartmented by these deformational structures

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Of the four lacustrine deltaic models, which were found in the Pendência formation, two are represented in the Serraria field. Respectively the deltaic models 1 and 3 shows the reservoir zones A and B. The Zone A is divided into six sub-areas. Each is representing a smaller cycle of development of sigmoidal lobes of deltaic front. Zone B produces in reservoirs of Model 3, or so called Full delta. The Zone B is formed by overlapping the deltaic plain system over the deltaic/prodeltaic front (model 1). This work uses the method of zooming with the aim to contextualize the geometric aspects of the sand bodies, highlighting the analysis of facies and diagenesis with help of pictures and testimonies of thin sections. The sigmoidal lobes of Zone A are fine to very fine sandstones, well sorted, with a arcosian composition.;practically with a weak compaction and cementation of a kind of film of clay (if very fine) and overgrowth feldspar (fine texture). This silicate phases are succeeded by cementation of poiquilotópica calcite, and after this a stage of dissolution, containing only regular permoporosity for this reservoir. Zone B has a combination of two types of deltaic plain reservoir. One is the rarest of distributary channel and the other the most common of lobes of crevasse. In the channel coarse to medium-grained and poor to moderate sorted sandstones are formed (tuning up), and with a lytic arcosiana nature. Rarely there are cements, including growth of feldspar and rhombohedral dolomite, which prevent a high permoporosity of the reservoir. In the crevasse lobes, the sandstones are laminated, fine and well sorted, arkosic, rarely with overgrowth feldspar and calcite poiquilotópica, and with a good intergranular permoporosity

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the last decades, analogue modelling has been used in geology to improve the knowledge of how geological structures are nucleated, how they grow and what are the main important points in such processes. The use of this tool in the oil industry, to help seismic interpretations and mainly to search for structural traps contributed to disseminate the use of this tool in the literature. Nowadays, physical modelling has a large field of applications, since landslide to granite emplacement along shear zones. In this work, we deal with physical modelling to study the influence of mechanical stratifications in the nucleation and development of faults and fractures in a context of orthogonal and conjugated oblique basins. To simulate a mechanical stratigraphy we used different materials, with distinct physical proprieties, such as gypsum powder, glass beads, dry clay and quartz sand. Some experiments were run along with a PIV (Particle Image Velocimetry), an instrument that shows the movement of the particles to each deformation moment. Two series of experiments were studied: i) Series MO: We tested the development of normal faults in a context of an orthogonal (to the extension direction) basin. Experiments were run taking into account the change of materials and strata thickness. Some experiments were done with sintectonic sedimentation. We registered differences in the nucleation and growth of faults in layers with different rheological behavior. The gypsum powder layer behaves in a more competent mode, which generates a great number of high angle fractures. These fractures evolve to faults that exhibit a higher dip than when they cross less competent layers, like the one of quartz sand. This competent layer exhibits faulted blocks arranged in a typical domino-style. Cataclastic breccias developed along the faults affecting the competent layers and showed different evolutional history, depending on the deforming stratigraphic sequence; ii) Series MOS2: Normal faults were analyzed in conjugated sub-basins (oblique to the extension direction) developed in a sequence with and without rheological contrast. In experiments with rheological contrast, two important grabens developed along the faulted margins differing from the subbasins with mechanical stratigraphy. Both experiments developed oblique fault systems and, in the area of sub-basins intersection, faults traces became very curved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discussion about rift evolution in the Brazilian Equatorial margin during the South America-Africa breakup in the Jurassic/Cretaceous has been focused in many researches. But rift evolution based on development and growth of faults has not been well explored. In this sense, we investigated the Cretaceous Potiguar Basin in the Equatorial margin of Brazil to understand the geometry of major faults and the influence of crustal heterogeneity and preexisting structural fabric in the evolution of the basin internal architecture. Previous studies pointed out that the rift is an asymmetrical half-graben elongated along the NE-SW direction. We used 2D seismic, well logs and 3D gravity modeling to analyze four major border fault segments and determine their maximum displacement (Dmax) and length (L) ratio in the Potiguar Rift. We constrained the 3D gravity modeling with well data and the interpretation of seismic sections. The difference of the fault displacement measured in the gravity model is in the order of 10% compared to seismic and well data. The fault-growth curves allowed us to divide the faulted rift border into four main fault segments, which provide roughly similar Dmax/L ratios. Fault-growth curves suggest that a regional uniform tectonic mechanism influenced growth of the rift fault segments. The variation of the displacements along the fault segments indicates that the fault segments were formed independently during rift initiation and were linked by hard and soft linkages. The latter formed relay ramps. In the interconnection zones the Dmax/L ratios are highest due to interference of fault segment motions. We divided the evolution of the Potiguar Rift into five stages based on these ratios and correlated them with the major tectonic stages of the breakup between South America and Africa in Early Cretaceous.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discussion about rift evolution in the Brazilian Equatorial margin during the South America-Africa breakup in the Jurassic/Cretaceous has been focused in many researches. But rift evolution based on development and growth of faults has not been well explored. In this sense, we investigated the Cretaceous Potiguar Basin in the Equatorial margin of Brazil to understand the geometry of major faults and the influence of crustal heterogeneity and preexisting structural fabric in the evolution of the basin internal architecture. Previous studies pointed out that the rift is an asymmetrical half-graben elongated along the NE-SW direction. We used 2D seismic, well logs and 3D gravity modeling to analyze four major border fault segments and determine their maximum displacement (Dmax) and length (L) ratio in the Potiguar Rift. We constrained the 3D gravity modeling with well data and the interpretation of seismic sections. The difference of the fault displacement measured in the gravity model is in the order of 10% compared to seismic and well data. The fault-growth curves allowed us to divide the faulted rift border into four main fault segments, which provide roughly similar Dmax/L ratios. Fault-growth curves suggest that a regional uniform tectonic mechanism influenced growth of the rift fault segments. The variation of the displacements along the fault segments indicates that the fault segments were formed independently during rift initiation and were linked by hard and soft linkages. The latter formed relay ramps. In the interconnection zones the Dmax/L ratios are highest due to interference of fault segment motions. We divided the evolution of the Potiguar Rift into five stages based on these ratios and correlated them with the major tectonic stages of the breakup between South America and Africa in Early Cretaceous.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Bacia de Almada, localizada no estado da Bahia, compartilha características similares com as outras bacias da margem leste do Brasil, quando é analisada segundo aspectos como os processos sedimentares e o regime de esforço dominante durante a sua formação. Observa-se uma diferença marcante em relação as outras bacias quando é analisada sob a ótica da composição da crosta transicional, uma vez que não se registra atividade vulcânica durante a fase rifte. A aquisição de um extenso levantamento sísmico 3D, com cabos de 6 km de comprimento e 9.2 segundos de tempo de registro (tempo sísmico duplo), resultaram em imagens sísmicas de boa qualidade das estruturas profundas do rifte. Adicionalmente, estudos de modelagem gravimétrica foram integrados com a análise sísmica para corroborar o modelo geológico. A Bacia de Almada é parte dos sistemas de rifte continentais, desenvolvidos durante o Berriasiano até o Aptiano, que antecederam a quebra do continente do Gondwana, evoluindo posteriormente para uma margem passiva divergente. O processo do rifteamento desenvolveu cinco sub-bacias de orientação NNE-SSO, desde posições terrestres até marinhas profundas, produzindo um arcabouço estrutural complexo. Os perfis da sísmica profunda mostram o afinamento progressivo da crosta continental até espessuras da ordem de 5 km, abaixo da sub-bacia mais oriental, com fatores de estiramento crustal próximo a 7 antes do desenvolvimento de crosta oceânica propriamente dita. As imagens sísmicas de boa qualidade permitem também o reconhecimento de sistemas de falhas lístricas que se iniciam na crosta superior, evoluem atravessando a crosta e conectando as sub-bacias para finalizar em um descolamento horizontal na crosta inferior estratificada. Adicionalmente, a bacia apresenta um perfil assimétrico, compatível com mecanismos de cisalhamento simples. As margens vulcânicas (VM) e não vulcânicas (NVM), são os extremos da análise composicional das margens divergentes continentais. Na Bacia de Almada não se reconhecem os elementos arquiteturais típicos das VM, tais como são as grandes províncias ígneas, caracterizadas por cunhas de refletores que mergulham em direção ao mar e por intenso vulcanismo pré- e sin-rifte nas bacias. Embora a margem divergente do Atlântico Sul seja interpretada tradicionalmente como vulcânica, o segmento do rifte ao sul do Estado da Bahia apresenta características não-vulcânicas, devido à ausência destes elementos arquiteturais e aos resultados obtidos nas perfurações geológicas que eventualmente alcançam a seqüência rifte e embasamento. Regionalmente a margem divergente sul-americana é majoritariamente vulcânica, embora a abundância e a influência do magmatísmo contemporâneo ao rifte seja muito variável. Ao longo da margem continental, desde a Bacia Austral no sul da Argentina, até a Bacia de Pernambuco no nordeste do Brasil, podem ser reconhecidos segmentos de caráter vulcânico forte, médio e não vulcânico. Nos exemplos clássicos de margens não vulcânicas, como a margem da Ibéria, a crosta transicional é altamente afinada podendo apresentar evidências de exumação de manto. Na Bacia de Almada, a crosta transicional apresenta importante estiramento embora não haja evidências concretas de exumação de manto. Os mecanismos responsáveis pela geração e intrusão dos grandes volumes de magma registrados nas margens divergentes são ainda sujeitos a intenso debate. Ao longo da margem divergente sul-americana há evidências da presença dos mecanismos genéticos de estiramento litosférico e impacto de plumas. Alternativamente estes dois mecanismos parecem ter tido um papel importante na evolução tectônica da margem sudeste e sul, diferenciando-as da margem continental onde foi implantada a Bacia de Almada.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A deposição aptiana da margem continental brasileira é caracterizada por dois elementos principais: 1) a presença de evaporitos (halita e/ou anidrita) num ambiente definido como lago-mar (de acordo com HSÜ, 1987); e 2) uma configuração tectonossedimentar do tipo sag. A chegada do mar às bacias, antes puramente continentais, é um evento que afeta toda a margem continental do Brasil, bem como tem ocorrência global. A sua presença nas bacias da margem equatorial , em particular, na Bacia Potiguar, possui um forte relacionamento com a existência de petróleo e gás (Bertani et al., 1989). A margem sudeste da Bacia Potiguar possui um razoável cobertura sísimica tanto 2D como 3D. As unidades estratigráficas compõe esta porção da bacia são a Formação Pendência, na base, a Formação Alagamar, a Formação Açu e no topo, a Formação Jandaíra. A Formação Pendência, na realidade mais um grupo do que formação, engloba as rochas depositadas na fase riftee da bacia (Della Favera et al., 1994). A Formação Alagamar envolve os sedimentos depositados no Aptiano, os quais estarão no foco deste trabalho; é formada por três membros: Upanema, Camadas Ponta de Tubarão e Galinhos (Della Favera, 1990). A Formação Açu, do Cretáceo Superior, separa-se discordantemente da seção da Formação Alagamar e é formada principalmente por arenitos fluviais. Esta formação transiciona para a Formação Jandaíra, denatureza carbonática, que constitui o topo da sequência sedimentar. Neste trabalho serão definidos os sistemas deposicionais e respectivos controles da sequência aptiana ao longo da borda sudeste da Bacia Potiguar a partir da identificação de eletrofácies e sismofácies. Sendo assim, nesta dissertação são mostradas as sequências de 3 e 4 ordem que representam, em conjunto, a Fm. Alagamar. Foram identificadas, em perfis elétricos de diferentes poços na área de estudo pelo menos 6 sequências de 4 ordem e 3 sequências de 3 ordem, que também foram identificadas em seções sísmicas arbitrária de direção SW-NE e SE-NW interligando os poços de etudo. A partir da análise dos dados e sequências identificadas, a reconstituiçãopaleoambiental apontou para ambiente de borda de lago (lago-mar) próxima a escarpa de falha, com depósitos de leques aluviais a delta de rios entrelaçados, praias com tempestitosareno-calcíferos, laguna salgada com formação de estromatólitos e eventuais solos carbonáticos. Sendo assim, as sequências de 3 ordem identificadas representariam cada um dos membros da Fm. Alagamar (Mb. Upanema, Mb. Ponta de Tubarão e Mb. Galinhos, da base para o topo). A correlação das sequências de 4 ordem identificadas pode ser aplicada no rastreamento de corpos arenosos, reservatórios de petróleo nessa porção da bacia.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A Bacia da Foz do Amazonas localiza-se no extremo noroeste da plataforma continental brasileira, mais precisamente na margem equatorial. Esta margem se distingue da margem leste brasileira, principalmente pela existência de esforços transtensivos que culminaram com a criação de falhas transformantes de direção E-W e, consequente, criação de bacias do tipo pull apart. Esta bacia ainda se difere das demais bacias brasileiras devido à existência de um expressivo pacote sedimentar depositado nos últimos 11 Ma., que pode chegar a mais de 10.000 metros de sedimentos. Tal feição, denominada Cone Amazônico, apresenta ainda um arcabouço estratigráfico pouco compreendido. Neste trabalho, buscou-se trazer novas perspectivas acerca do pacote sedimentar da bacia, com ênfase na análise estratigráfica dos ciclos progradacionais característicos de progradações deltaicas, bem como a distribuição de possíveis reservatórios siliciclásticos. A análise integrada de poços com as interpretações sísmicas possibilitou a confecção de detalhadas correlações estratigráficas para região do Cone Amazônico. Foram também realizadas importantes observações para as formações mais antigas que o Cone Amazônico como, por exemplo, a influência de intrusões ígneas nas formações Caciporé e Calçoene, atingindo até mesmo a Formação Limoeiro (sequência pós-rifte), bem como a presença de falhas normais relacionada à intumescência da feição ígnea, atingindo a plataforma carbonática. Esta bacia constitui uma fronteira exploratória, complexa em seus aspectos estruturais e estratigráficos, onde a interação de fatores como taxa de acomodação e variação do aporte sedimentar ainda não está totalmente compreendido.