979 resultados para Riemann tensor invariants


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we rigorously prove that the complete set of Riemann tensor invariants given by Sneddon [J. Math. Phys. 40, 5905 (1999)] is both minimal and complete. Furthermore, we provide a two-stage algorithm for the explicit construction of polynomial syzygies relating any dependent Riemann tensor invariant to members of the complete set.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a new determining set, CZ, of Riemann invariants which possesses the minimum degree property. From an analysis on the possible independence of CZ, we are led to the division of all space-times into two distinct, invariantly characterized, classes: a general class MG+, and a special, singular class MS For each class, we provide an independent set of invariants (IG+) ⊂ CZ and IS ⊂ CZ, respectively) which, with the results of a sequel paper, will be shown to be algebraically complete.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the set CZ of invariants [Zakhary and Carminati, J. Math. Phys. 42, 1474 (2001)] for the class of space-times whose Ricci tensors possess a null eigenvector. We show that all cases are maximally backsolvable, in terms of sets of invariants from CZ, but that some cases are not completely backsolvable and these all possess an alignment between an eigenvector of the Ricci tensor with a repeated principal null vector of the Weyl tensor. We provide algebraically complete sets for each canonically different space-time and hence conclude with these results and those of a previous article [Carminati, Zakhary, and McLenaghan, J. Math. Phys. 43, 492 (2002)] that the CZ set is determining or maximal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we shall consider all pure Ricci and pure Weyl scalar invariants of any degree, in a four-dimensional Lorentzian space. We present a general graph-theoretic based reduction algorithm which decomposes, using syzygies, any pure invariant in terms of the independent base invariants {r1,r2,r3} or {w1,w2}

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We continue our analysis of the polynomial invariants of the Riemann tensor in a four-dimensional Lorentzian space. We concentrate on the mixed invariants of even degree in the Ricci spinor Φ<sub>ABȦḂ</sub> and show how, using constructive graph-theoretic methods, arbitrary scalar contractions between copies of the Weyl spinor ψ<sub>ABCD</sub>, its conjugate ψ<sub>ȦḂĊḊ</sub> and an even number of Ricci spinors can be expressed in terms of paired contractions between these spinors. This leads to an algorithm for the explicit expression of dependent invariants as polynomials of members of the complete set. Finally, we rigorously prove that the complete set as given by Sneddon [J. Math. Phys. 39, 1659-1679 (1998)] for this case is both complete and minimal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the set of invariants CZ [E. Zakhary and J. Carminati, J. Math. Phys. 42, 1474 (2001)] for the class of space-times whose Ricci tensors do not possess a null eigenvector. We show that all cases are completely backsolvable in terms of sets of invariants from CZ. We provide algebraically complete sets for each canonically different space-time.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis introduces a novel way of writing polynomial invariants as network graphs, and applies this diagrammatic notation scheme, in conjunction with graph theory, to derive algorithms for constructing relationships (syzygies) between different invariants. These algorithms give rise to a constructive solution of a longstanding classical problem in invariant theory.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Until recently the debate on the ontology of spacetime had only a philosophical significance, since, from a physical point of view, General Relativity has been made "immune" to the consequences of the "Hole Argument" simply by reducing the subject to the assertion that solutions of Einstein equations which are mathematically different and related by an active diffeomorfism are physically equivalent. From a technical point of view, the natural reading of the consequences of the "Hole Argument” has always been to go further and say that the mathematical representation of spacetime in General Relativity inevitably contains a “superfluous structure” brought to light by the gauge freedom of the theory. This position of apparent split between the philosophical outcome and the physical one has been corrected thanks to a meticulous and complicated formal analysis of the theory in a fundamental and recent (2006) work by Luca Lusanna and Massimo Pauri entitled “Explaining Leibniz equivalence as difference of non-inertial appearances: dis-solution of the Hole Argument and physical individuation of point-events”. The main result of this article is that of having shown how, from a physical point of view, point-events of Einstein empty spacetime, in a particular class of models considered by them, are literally identifiable with the autonomous degrees of freedom of the gravitational field (the Dirac observables, DO). In the light of philosophical considerations based on realism assumptions of the theories and entities, the two authors then conclude by saying that spacetime point-events have a degree of "weak objectivity", since they, depending on a NIF (non-inertial frame), unlike the points of the homogeneous newtonian space, are plunged in a rich and complex non-local holistic structure provided by the “ontic part” of the metric field. Therefore according to the complex structure of spacetime that General Relativity highlights and within the declared limits of a methodology based on a Galilean scientific representation, we can certainly assert that spacetime has got "elements of reality", but the inevitably relational elements that are in the physical detection of point-events in the vacuum of matter (highlighted by the “ontic part” of the metric field, the DO) are closely dependent on the choice of the global spatiotemporal laboratory where the dynamics is expressed (NIF). According to the two authors, a peculiar kind of structuralism takes shape: the point structuralism, with common features both of the absolutist and substantival tradition and of the relationalist one. The intention of this thesis is that of proposing a method of approaching the problem that is, at least at the beginning, independent from the previous ones, that is to propose an approach based on the possibility of describing the gravitational field at three distinct levels. In other words, keeping the results achieved by the work of Lusanna and Pauri in mind and following their underlying philosophical assumptions, we intend to partially converge to their structuralist approach, but starting from what we believe is the "foundational peculiarity" of General Relativity, which is that characteristic inherent in the elements that constitute its formal structure: its essentially geometric nature as a theory considered regardless of the empirical necessity of the measure theory. Observing the theory of General Relativity from this perspective, we can find a "triple modality" for describing the gravitational field that is essentially based on a geometric interpretation of the spacetime structure. The gravitational field is now "visible" no longer in terms of its autonomous degrees of freedom (the DO), which, in fact, do not have a tensorial and, therefore, nor geometric nature, but it is analyzable through three levels: a first one, called the potential level (which the theory identifies with the components of the metric tensor), a second one, known as the connections level (which in the theory determine the forces acting on the mass and, as such, offer a level of description related to the one that the newtonian gravitation provides in terms of components of the gravitational field) and, finally, a third level, that of the Riemann tensor, which is peculiar to General Relativity only. Focusing from the beginning on what is called the "third level" seems to present immediately a first advantage: to lead directly to a description of spacetime properties in terms of gauge-invariant quantites, which allows to "short circuit" the long path that, in the treatises analyzed, leads to identify the "ontic part” of the metric field. It is then shown how to this last level it is possible to establish a “primitive level of objectivity” of spacetime in terms of the effects that matter exercises in extended domains of spacetime geometrical structure; these effects are described by invariants of the Riemann tensor, in particular of its irreducible part: the Weyl tensor. The convergence towards the affirmation by Lusanna and Pauri that the existence of a holistic, non-local and relational structure from which the properties quantitatively identified of point-events depend (in addition to their own intrinsic detection), even if it is obtained from different considerations, is realized, in our opinion, in the assignment of a crucial role to the degree of curvature of spacetime that is defined by the Weyl tensor even in the case of empty spacetimes (as in the analysis conducted by Lusanna and Pauri). In the end, matter, regarded as the physical counterpart of spacetime curvature, whose expression is the Weyl tensor, changes the value of this tensor even in spacetimes without matter. In this way, going back to the approach of Lusanna and Pauri, it affects the DOs evolution and, consequently, the physical identification of point-events (as our authors claim). In conclusion, we think that it is possible to see the holistic, relational, and non-local structure of spacetime also through the "behavior" of the Weyl tensor in terms of the Riemann tensor. This "behavior" that leads to geometrical effects of curvature is characterized from the beginning by the fact that it concerns extensive domains of the manifold (although it should be pointed out that the values of the Weyl tensor change from point to point) by virtue of the fact that the action of matter elsewhere indefinitely acts. Finally, we think that the characteristic relationality of spacetime structure should be identified in this "primitive level of organization" of spacetime.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In arXiv:1310.5713 1] and arXiv:1310.6659 2] a formula was proposed as the entanglement entropy functional for a general higher-derivative theory of gravity, whose lagrangian consists of terms containing contractions of the Riemann tensor. In this paper, we carry out some tests of this proposal. First, we find the surface equation of motion for general four-derivative gravity theory by minimizing the holographic entanglement entropy functional resulting from this proposed formula. Then we calculate the surface equation for the same theory using the generalized gravitational entropy method of arXiv:1304.4926 3]. We find that the two do not match in their entirety. We also construct the holographic entropy functional for quasi-topological gravity, which is a six-derivative gravity theory. We find that this functional gives the correct universal terms. However, as in the R-2 case, the generalized gravitational entropy method applied to this theory does not give exactly the surface equation of motion coming from minimizing the entropy functional.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Lovelock terms are polynomial scalar densities in the Riemann curvature tensor that have the remarkable property that their Euler-Lagrange derivatives contain derivatives of the metric of an order not higher than 2 (while generic polynomial scalar densities lead to Euler-Lagrange derivatives with derivatives of the metric of order 4). A characteristic feature of Lovelock terms is that their first nonvanishing term in the expansion g λμ = η λμ + h λμ of the metric around flat space is a total derivative. In this paper, we investigate generalized Lovelock terms defined as polynomial scalar densities in the Riemann curvature tensor and its covariant derivatives (of arbitrarily high but finite order) such that their first nonvanishing term in the expansion of the metric around flat space is a total derivative. This is done by reformulating the problem as a BRST cohomological one and by using cohomological tools. We determine all the generalized Lovelock terms. We find, in fact, that the class of nontrivial generalized Lovelock terms contains only the usual ones. Allowing covariant derivatives of the Riemann tensor does not lead to a new structure. Our work provides a novel algebraic understanding of the Lovelock terms in the context of BRST cohomology. © 2005 IOP Publishing Ltd.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A geometric invariant is associated to the space of fiat connections on a G-bundle over a compact Riemann surface and is related to the energy of harmonic functions.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dans ce travail, nous adaptons la méthode des symétries conditionnelles afin de construire des solutions exprimées en termes des invariants de Riemann. Dans ce contexte, nous considérons des systèmes non elliptiques quasilinéaires homogènes (de type hydrodynamique) du premier ordre d'équations aux dérivées partielles multidimensionnelles. Nous décrivons en détail les conditions nécessaires et suffisantes pour garantir l'existence locale de ce type de solution. Nous étudions les relations entre la structure des éléments intégraux et la possibilité de construire certaines classes de solutions de rang k. Ces classes de solutions incluent les superpositions non linéaires d'ondes de Riemann ainsi que les solutions multisolitoniques. Nous généralisons cette méthode aux systèmes non homogènes quasilinéaires et non elliptiques du premier ordre. Ces méthodes sont appliquées aux équations de la dynamique des fluides en (3+1) dimensions modélisant le flot d'un fluide isentropique. De nouvelles classes de solutions de rang 2 et 3 sont construites et elles incluent des solutions double- et triple-solitoniques. De nouveaux phénomènes non linéaires et linéaires sont établis pour la superposition des ondes de Riemann. Finalement, nous discutons de certains aspects concernant la construction de solutions de rang 2 pour l'équation de Kadomtsev-Petviashvili sans dispersion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we associate a new geometric invariant to the space of fiat connections on a G (= SU(2))-bundle on a compact Riemann surface M and relate it tcr the symplectic structure on the space Hom(pi(1)(M), G)/G consisting of representations of the fundamental group pi(1)(M) Of M into G module the conjugate action of G on representations.