250 resultados para Rickettsia typhi
Resumo:
Rickettsia typhi is the causal agent of murine typhus; a worldwide zoonotic and vector-borne infectious disease, commonly associated with the presence of domestic and wild rodents. Human cases of murine typhus in the state of Yucatán are frequent. However, there is no evidence of the presence of Rickettsia typhi in mammals or vectors in Yucatán. The presence of Rickettsia in rodents and their ectoparasites was evaluated in a small municipality of Yucatán using the conventional polymerase chain reaction technique and sequencing. The study only identified the presence of Rickettsia typhi in blood samples obtained from Rattus rattus and it reported, for the first time, the presence of R. felis in the flea Polygenis odiosus collected from Ototylomys phyllotis rodent. Additionally, Rickettsia felis was detected in the ectoparasite Ctenocephalides felis fleas parasitizing the wild rodent Peromyscus yucatanicus. This study’s results contributed to a better knowledge of Rickettsia epidemiology in Yucatán.
Resumo:
Rickettsial diseases except those belonging to spotted fever group rickettsioses are poorly studied in South America particularly in Brazil where few epidemiological reports have been published. We describe a serosurvey for Rickettsia rickettsii, R. typhi, Coxiella burnetii, Bartonella henselae, B. quintana, and Ehrlichia chaffeensis in 437 healthy people from a Brazilian rural community. The serum samples were tested by indirected micro-immunoflourescence technique and a cutoff titer of 1:64 was used. The seroprevalence rates for R. rickettsii, R. typhi, C. burnetii, B. henselae, B. quintana, and E. chaffeensis were respectively 1.6% (7 samples); 1.1% (5 samples); 3.9% (17 samples); 13.7% (60 samples); 12.8% (56 samples), and 10.5% (46 samples). Frequent multiple/cross-reactivity was observed in this study. Age over 40 years old, urban profession, and rural residence were significantly associated with some but not all infections rate. Low seropositivity rates for R. rickettsii, R. typhi, and C. burnetii contrasted with higher rates of seropositivity for B. quintana, B. henselae, and E. chaffeensis. These results show that all tested rickettsial species or antigenically closely related possible exist in this particular region.
Resumo:
Tesis (Maestría en Ciencias en el Ãrea de Entomología Médica) UANL
Resumo:
The genomes of Fusobacterium nucleatum subspecies polymorphum strain ATCC 10953, Rickettsia typhi strain Wilmington, and Francisella tularensis subspecies holarctica strain OSU18 were sequenced, annotated, and analyzed. Each genome was then compared to the sequenced genomes of closely related bacteria. The genome of F. nucleatum ATCC 10953 was compared to two additional F. nucleatum subspecies, subspecies nucleatum and subspecies vincentii. This analysis revealed substantial evidence of horizontal gene transfer along with considerable genetic diversity within the species of F. nucleatum. R. typhi was compared to R. prowazekii and R. conorii. This analysis uncovered a hotspot for chromosomal rearrangements in the Spotted Fever Group but not the Typhus Group Rickettsia and revealed the close genetic relationship between the Typhus Group rickettsial species. F. tularensis OSU18 was compared to two additional F. tularensis strains. These comparisons uncovered significant chromosomal rearrangements between F. tularensis subspecies due to recombination between insertion sequence elements. ^
Resumo:
Until the year 2000, only three Rickettsia species were known in South America: (i) Rickettsia rickettsii, transmitted by the ticks Amblyomma cajennense, and Amblyomma aureolatum, reported in Colombia, Argentina, and Brazil, where it is the etiological agent of Rocky Mountain spotted fever; (ii) Rickettsia prowazekii, transmitted by body lice and causing epidemic typhus in highland areas, mainly in Peru; (iii) Rickettsia typhi, transmitted by fleas and causing endemic typhus in many countries. During this new century, at least seven other rickettsiae were reported in South America: Rickettsia felis infecting fleas and the tick-associated agents Rickettsia parkeri, Rickettsia massiliae, Candidatus ""Rickettsia amblyommii,"" Rickettsia bellii, Rickettsia rhipicephali, and Candidatus ""Rickettsia andeanae. "" Among these other rickettsiae, only R. felis, R. parkeri and R. massiliae are currently recognized as human pathogens. R. rickettsii is a rare agent in nature, infecting : <= 1% individuals in a few tick populations. Contrastingly, R. parkeri, Candidatus ""R. amblyommii, "" R. rhipicephali, and R. bellii are usually found infecting 10 to 100% individuals in different tick populations. Despite rickettsiae being transmitted transovarially through tick generations, low infection rates for R. rickettsii are possibly related to pathogenic effect of R. rickettsii for ticks, as shown for A. aureolatum under laboratory conditions. This scenario implies that R. rickettsii needs amplifier vertebrate hosts for its perpetuation in nature, in order to create new lines of infected ticks (horizontal transmission). In Brazil, capybaras and opossums are the most probable amplifier hosts for R. rickettsii, among A. cajennense ticks, and small rodents for A. aureolatum.
Resumo:
Molecular diagnosis using real-time polymerase chain reaction (PCR) may allow earlier diagnosis of rickettsiosis. We developed a duplex real-time PCR that amplifies (1) DNA of any rickettsial species and (2) DNA of both typhus group rickettsia, that is, Rickettsia prowazekii and Rickettsia typhi. Primers and probes were selected to amplify a segment of the 16S rRNA gene of Rickettsia spp. for the pan-rickettsial PCR and the citrate synthase gene (gltA) for the typhus group rickettsia PCR. Analytical sensitivity was 10 copies of control plasmid DNA per reaction. No cross-amplification was observed when testing human DNA and 22 pathogens or skin commensals. Real-time PCR was applied to 16 clinical samples. Rickettsial DNA was detected in the skin biopsies of three patients. In one patient with severe murine typhus, the typhus group PCR was positive in a skin biopsy from a petechial lesion and seroconversion was later documented. The two other patients with negative typhus group PCR suffered from Mediterranean and African spotted fever, respectively; in both cases, skin biopsy was performed on the eschar. Our duplex real-time PCR showed a good analytical sensitivity and specificity, allowing early diagnosis of rickettsiosis among three patients, and recognition of typhus in one of them.
Resumo:
Coxiella burnetii and members of the genus Rickettsia are obligate intracellular bacteria. Since cultivation of these organisms requires dedicated techniques, their diagnosis usually relies on serological or molecular biology methods. Immunofluorescence is considered the gold standard to detect antibody-reactivity towards these organisms. Here, we assessed the performance of a new automated epifluorescence immunoassay (InoDiag) to detect IgM and IgG against C. burnetii, Rickettsia typhi and Rickettsia conorii. Samples were tested with the InoDiag assay. A total of 213 sera were tested, of which 63 samples from Q fever, 20 from spotted fever rickettsiosis, 6 from murine typhus and 124 controls. InoDiag results were compared to micro-immunofluorescence. For acute Q fever, the sensitivity of phase 2 IgG was only of 30% with a cutoff of 1 arbitrary unit (AU). In patients with acute Q fever with positive IF IgM, sensitivity reached 83% with the same cutoff. Sensitivity for chronic Q fever was 100% whereas sensitivity for past Q fever was 65%. Sensitivity for spotted Mediterranean fever and murine typhus were 91% and 100%, respectively. Both assays exhibited a good specificity in control groups, ranging from 79% in sera from patients with unrelated diseases or EBV positivity to 100% in sera from healthy patients. In conclusion, the InoDiag assay exhibits an excellent performance for the diagnosis of chronic Q fever but a very low IgG sensitivity for acute Q fever likely due to low reactivity of phase 2 antigens present on the glass slide. This defect is partially compensated by the detection of IgM. Because it exhibits a good negative predictive value, the InoDiag assay is valuable to rule out a chronic Q fever. For the diagnosis of rickettsial diseases, the sensitivity of the InoDiag method is similar to conventional immunofluorescence.
Resumo:
Murine typhus has been increasingly recognized worldwide and is becoming a relevant differential diagnosis in febrile conditions. In Brazil, murine typhus has never received much attention. We present a recently diagnosed case and a literature review that suggests that the disease could be more prevalent in Southeastern Brazil than acknowledged until now.
Resumo:
Colombian physician Luis Benigno Patiño Camargo was one of the pioneers in the study of rickettsioses in South America, demonstrating for the first time in Colombia the presence of Rickettsia rickettsii as the etiological agent of a highly deadly exanthematic febrile syndrome in the 1930s. However, Patiño-Camargo performed other investigations from 1917-1943, which represent the first descriptions and scientific evidence of the presence ofR. prowazekii and R. typhi in Colombia. Almost 60 years after the latest research conducted by Dr. Patiño-Camargo, rickettsioses were again a matter of interest and research. In the last decade over 20 research studies have been published, showing new endemic areas forR. rickettsii, as well as the description of new rickettsial species in Colombia.
Resumo:
We report cases of spotted fever rickettsiosis in Coronel Fabriciano Municipality of Minas Gerais State, Brazil. The cases occurred in May and June of 2000. During this period there were two deaths among children from an area named Pedreira in a periurban area of this municipality. In a boy who died with clinical manifestations of Brazilian spotted fever, a necropsy revealed the presence of a spotted fever group Rickettsia. The serological results confirm the difficulty in the differential diagnosis of patients with symptoms of rickettsial diseases.
Resumo:
BACKGROUND: Since its first detection, characterization of R. felis has been a matter of debate, mostly due to the contamination of an initial R. felis culture by R. typhi. However, the first stable culture of R. felis allowed its precise phenotypic and genotypic characterization, and demonstrated that this species belonged to the spotted fever group rickettsiae. Later, its genome sequence revealed the presence of two forms of the same plasmid, physically confirmed by biological data. In a recent article, Gillespie et al. (PLoS One. 2007;2(3):e266.) used a bioinformatic approach to refute the presence of the second plasmid form, and proposed the creation of a specific phylogenetic group for R. felis. METHODOLOGY/PRINCIPAL FINDINGS: In the present report, we, and five independent international laboratories confirmed unambiguously by PCR the presence of two plasmid forms in R. felis strain URRWXCal(2) (T), but observed that the plasmid content of this species, from none to 2 plasmid forms, may depend on the culture passage history of the studied strain. We also demonstrated that R. felis does not cultivate in Vero cells at 37 degrees C but generates plaques at 30 degrees C. Finally, using a phylogenetic study based on 667 concatenated core genes, we demonstrated the position of R. felis within the spotted fever group. SIGNIFICANCE: We demonstrated that R. felis, which unambiguously belongs to the spotted fever group rickettsiae, may contain up to two plasmid forms but this plasmid content is unstable.
Resumo:
Brazilian spotted fever (BSF) is an emerging disease most likely caused by Rickettsia rickettsii. The objective of the present study was to estimate the seroprevalence of BSF rickettsia infections in equines from six horse farms located in Londrina County, Paraná, Southern Brazil. Six owners of horse farms situated in Cambé, Santa Fé, Guaraci and Londrina municipalities participated in the study. All farms were located in areas where BSF has not been reported. A total of 273 horses were sampled and their sera were tested by indirect Immunofluorescence assay (IFA) using R. rickettsii and R. parkeri antigens. Titers equal to and greater than 64 were considered positive. Of 273 sera tested, 15 (5.5%) reacted to R. rickettsii and 5 (1.8%) to R. parkeri. Five out of the six farms studied revealed seropositive animals and seropositivity rate ranged from 0 to 13%. The titers ranged from 64 to 512, and four samples had a titer of 512. Nine animals reacted to R. rickettsii with titers four-fold higher than those for R. parkeri. These results suggest that horses in Northern Paraná may have been exposed to rickettsiae identical or closely related to R. rickettsii.
Resumo:
Brazilian spotted fever (BSF) is a vector-borne zoonosis caused by Rickettsia rickettsii bacteria. Dogs can be host sentinels for this bacterium. The aim of the study was to determine the presence of antibodies against Rickettsia spp. in dogs from the city of São José dos Pinhais, State of Paraná, Southern Brazil, where a human case of BSF was first reported in the state. Between February 2006 and July 2007, serum samples from 364 dogs were collected and tested at 1:64 dilutions by indirect immunofluorescence assay (IFA) against R. rickettsii and R. parkeri. All sera that reacted at least to one of Rickettsia species were tested against the six main Rickettsia species identified in Brazil: R. rickettsii, R. parkeri, R. bellii, R. rhipicephali, R. amblyommii and R. felis. Sixteen samples (4.4%) reacted to at least one Rickettsia species. Among positive animals, two dogs (15.5%) showed suggestive titers for R. bellii exposure. One sample had a homologous reaction to R. felis, a confirmed human pathogen. Although Rickettsia spp. circulation in dogs in the area studied may be considered at low prevalence, suggesting low risk of human infection, the present data demonstrate for the first time the exposure of dogs to R. bellii and R. felis in Southern Brazil.
Resumo:
Brazilian Spotted Fever (BSF) is a lethal rickettsiosis in humans caused by the bacteria Rickettsia rickettsii, and is endemic in some areas of Brazil. Horses and dogs are part of the disease's life cycle and they may also serve as sentinel animals in epidemiological studies. The first human BSF case in the State of Paraná was reported in 2005. The present study was conducted in the municipality of Almirante Tamandaré, where no previous case of BSF was reported. Serum samples were collected from 71 horses and 20 dogs from nine properties in the area. Ticks were also collected from these animals. All farmers completed a questionnaire about their knowledge of BSF and animal health management. Serum samples were analyzed by indirect immunofluorescent-antibody assay (IFA) using R. rickettsii and R. parkeri as antigens. Ticks were analyzed by PCR for Rickettsia sp., and all of them were PCR-negative. Six horses (8.45%) and 4 dogs (20%) were identified as seropositive. Farmers were not aware of the correlation between the presence of ticks and risk of BSF. Although a non-endemic area, Almirante Tamandaré is a vulnerable environment for BSF and effective tick control measures are required.