972 resultados para Ribonuclease H, Calf Thymus
Resumo:
Chlorambucil is an anticancer agent used in the treatment of a variety of cancers, especially in chronic lymphocytic leukemia, and autoimmune diseases. Nevertheless, chlorambucil is potentially mutagenic, teratogenic and carcinogenic. The high antitumor activity and high toxicity of chlorambucil and its main metabolite, phenylacetic acid mustard, to normal tissues have been known for a long time. Despite this, no detailed chemical data on their reactions with biomolecules in aqueous media have been available. The aim of the work described in this thesis was to analyze reactions of chlorambucil with 2’-deoxyribonucleosides and calf thymus DNA in aqueous buffered solution, at physiological pH, and to identify and characterize all adducts by using modern analyzing methods. Our research was also focused on the reactions of phenylacetic acid mustard with 2’-deoxynucleosides under similar conditions. A review of the literature consisting of general background of nucleic acids, alkylating agents and ultraviolet spectroscopy used to identify the purine and pyrimidine nucleosides, as well as the results from experimental work are presented and discussed in this doctoral thesis.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Aicardi-Goutières syndrome (AGS) is a genetic encephalopathy whose clinical features mimic those of acquired in utero viral infection. AGS exhibits locus heterogeneity, with mutations identified in genes encoding the 3′→5′ exonuclease TREX1 and the three subunits of the RNASEH2 endonuclease complex. To define the molecular spectrum of AGS, we performed mutation screening in patients, from 127 pedigrees, with a clinical diagnosis of the disease. Biallelic mutations in TREX1, RNASEH2A, RNASEH2B, and RNASEH2C were observed in 31, 3, 47, and 18 families, respectively. In five families, we identified an RNASEH2A or RNASEH2B mutation on one allele only. In one child, the disease occurred because of a de novo heterozygous TREX1 mutation. In 22 families, no mutations were found. Null mutations were common in TREX1, although a specific missense mutation was observed frequently in patients from northern Europe. Almost all mutations in RNASEH2A, RNASEH2B, and RNASEH2C were missense. We identified an RNASEH2C founder mutation in 13 Pakistani families. We also collected clinical data from 123 mutation-positive patients. Two clinical presentations could be delineated: an early-onset neonatal form, highly reminiscent of congenital infection seen particularly with TREX1 mutations, and a later-onset presentation, sometimes occurring after several months of normal development and occasionally associated with remarkably preserved neurological function, most frequently due to RNASEH2B mutations. Mortality was correlated with genotype; 34.3% of patients with TREX1, RNASEH2A, and RNASEH2C mutations versus 8.0% RNASEH2B mutation-positive patients were known to have died (P = .001). Our analysis defines the phenotypic spectrum of AGS and suggests a coherent mutation-screening strategy in this heterogeneous disorder. Additionally, our data indicate that at least one further AGS-causing gene remains to be identified. © 2007 by The American Society of Human Genetics. All rights reserved.
Resumo:
The Fourier transform-infrared (FT-IR) signature of dry samples of DNA and DNA-polypeptide complexes, as studied by IR microspectroscopy using a diamond attenuated total reflection (ATR) objective, has revealed important discriminatory characteristics relative to the PO2(-) vibrational stretchings. However, DNA IR marks that provide information on the sample's richness in hydrogen bonds have not been resolved in the spectral profiles obtained with this objective. Here we investigated the performance of an all reflecting objective (ARO) for analysis of the FT-IR signal of hydrogen bonds in DNA samples differing in base richness types (salmon testis vs calf thymus). The results obtained using the ARO indicate prominent band peaks at the spectral region representative of the vibration of nitrogenous base hydrogen bonds and of NH and NH2 groups. The band areas at this spectral region differ in agreement with the DNA base richness type when using the ARO. A peak assigned to adenine was more evident in the AT-rich salmon DNA using either the ARO or the ATR objective. It is concluded that, for the discrimination of DNA IR hydrogen bond vibrations associated with varying base type proportions, the use of an ARO is recommended.
Resumo:
Biomolecule oxidation promoted by Cu, Zn-superoxide dismutase (SOD1) has been studied because of its potential role in neurodegenerative diseases. We studied the mechanism of DNA damage promoted by the SOD1-H(2)O(2) system. The system promoted the formation of strand breaks in plasmid DNA and the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in calf thymus DNA. We were also able to detect, for the. first time, 1,N(2)-etheno-2'-deoxyguanosine (1,N(2)-epsilon dGuo) in calf thymus DNA exposed to SOD1-H(2)O(2). The addition of a copper chelator caused a decrease in the frequency of 8-oxodGuo and 1,N(2)-epsilon dGuo, indicating the participation of copper ions lost from SOD1 active sites. The addition of bicarbonate increased the levels of both DNA lesions. We conclude that copper liberated from SOD1 active sites has a central role in the mechanism of DNA damage promoted by SOD1 in the presence of H(2)O(2), and that bicarbonate can modulate the reactivity of released copper.
Resumo:
The interactions between phosphorylcholine-substituted chitosans (PC-CH) and calf-thymus DNA (ct-DNA) were investigated focusing on the effects of the charge ratio, the pH, and phosphorylcholine content on the size and stability of the complexes using the ethidium bromide fluorescence assay, gel electrophoresis, dynamic light scattering. and fluorescence microscopy. The size and colloidal stability of deacetylated chitosan (CH/DNA) and PC-CH/DNA complexes were strongly dependent on phosphorylcholine content, charge ratios, and pH. The interaction strengths were evaluated from ethidium bromide fluorescence, and at N/P ratios higher than 5.0, no DNA release was observed in any synthesized PC-CH/DNA polyplexes by gel electrophoresis. The PC-CH/DNA polyplexes exhibited a higher resistance to aggregation compared to deacetylated chitosan (CH) at neutral pH. At low pH values highly charged chitosan and its phosphorylcholine derivatives had strong binding affinity with DNA, whereas at higher pH Values CH formed large aggregates and only C-CH derivatives were able to form small nanoparticles with hydrodynamic radii varying from 100 to 150 nm. Nanoparticles synthesized at low ionic strength with PC-CH derivatives containing moderate degrees of substitution (DS = 20% and 40%) remained stable for weeks. Photomicroscopies also confirmed that rhodamine-labeled PC(40)CH derivative nanoparticles presented higher colloidal stability than those synthesized using deacetylated chitosan. Accordingly, due to their improved physicochemical properties these phosphorylcholine-modified chitosans provide new perspectives for controlling the properties of polyplexes. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The process of immobilization of biological molecules is one of the most important steps in the construction of a biosensor. In the case of DNA, the way it exposes its bases can result in electrochemical signals to acceptable levels. The use of self-assembled monolayer that allows a connection to the gold thiol group and DNA binding to an aldehydic ligand resulted in the possibility of determining DNA hybridization. Immobilized single strand of DNA (ssDNA) from calf thymus pre-formed from alkanethiol film was formed by incubating a solution of 2-aminoethanothiol (Cys) followed by glutaraldehyde (Glu). Cyclic voltammetry (CV) was used to characterize the self-assembled monolayer on the gold electrode and, also, to study the immobilization of ssDNA probe and hybridization with the complementary sequence (target ssDNA). The ssDNA probe presents a well-defined oxidation peak at +0.158 V. When the hybridization occurs, this peak disappears which confirms the efficacy of the annealing and the DNA double helix performing without the presence of electroactive indicators. The use of SAM resulted in a stable immobilization of the ssDNA probe, enabling the hybridization detection without labels. This study represents a promising approach for molecular biosensor with sensible and reproducible results.
Resumo:
Trabalho Final de Mestrado para obtenção do grau de Mestre em Engenharia Química
Resumo:
Persistent pesticide transformation products (TPs) are increasingly being detected among different environmental compartments, including groundwater and surface water. However, there is no sufficient experimental data on their toxicological potential to assess the risk associated with TPs, even if their occurrence is known. In this study, the interaction of chlorophenoxy herbicides (MCPA, mecoprop, 2,4-D and dichlorprop) and their main transformation products with calf thymus DNA by UV-visible absorption spectroscopy has been assessed. Additionally, the toxicity of the chlorophenoxy herbicides and TPs was also assessed evaluating the inhibition of acetylcholinesterase activity. On the basis of the results found, it seems that AChE is not the main target of chlorophenoxy herbicides and their TPs. However, the results found showed that the transformation products displayed a higher inhibitory activity when compared with the parent herbicides. The results obtained in the DNA interaction studies showed, in general, a slight effect on the stability of the double helix. However, the data found for 4-chloro-2-methyl-6-nitrophenol suggest that this transformation product can interact with DNA through a noncovalent mode.
Resumo:
Humoral and cellular immune responses are currently induced against hepatitis C virus (HCV) core following vaccination with core-encoding plasmids. However, the anti-core antibody response is frequently weak or transient. In this paper, we evaluated the effect of different additives and DNA-protein combinations on the anti-core antibody response. BALB/c mice were intramuscularly injected with an expression plasmid (pIDKCo), encoding a C-terminal truncated variant of the HCV core protein, alone or combined with CaCl2, PEG 6000, Freund's adjuvant, sonicated calf thymus DNA and a recombinant core protein (Co.120). Mixture of pIDKCo with PEG 6000 and Freund's adjuvant accelerated the development of the anti-core Ab response. Combination with PEG 6000 also induced a bias to IgG2a subclass predominance among anti-core antibodies. The kinetics, IgG2a/IgG1 ratio and epitope specificity of the anti-core antibody response elicited by Co.120 alone or combined with pIDKCo was different regarding that induced by the pIDKCo alone. Our data indicate that the antibody response induced following DNA immunization can be modified by formulation strategies.
Resumo:
5-Aminolevulinic acid (ALA) is a heme precursor accumulated in acute intermittent porphyria (AIP), which might be associated with hepatocellular carcinoma (HCC) in symptomatic patients. Under metal catalyzed oxidation, ALA and its cyclic dimerization product, 3,6-dihydropyrazine-2,5-dipropanoic acid, produce reactive oxygen species that damage plasmid and calf thymus DNA bases, increase the steady state level of 8-oxo-7,8-dihydro-2´-deoxyguanosine in liver DNA and promote mitochondrial DNA damage. The final product of ALA, 4,5-dioxovaleric acid (DOVA), is able to alkylate guanine moieties, producing adducts. ALA and DOVA are mutagenic in bacteria. This review shows an up-to-date literature data that reinforce the hypothesis that the DNA damage induced by ALA may be associated with the development of HCC in AIP patients.
Resumo:
Biscationic amidines bind in the DNA minor groove and present biological activity against a range of infectious diseases. Two new biscationic compounds (bis-α,ω-S-thioureido, amino and sulfide analogues) were synthesized in good yields and fully characterized, and their interaction with DNA was also investigated. Isothermal titration calorimetry (ITC) was used to measure the thermodynamic properties of binding interactions between DNA and these ligands. A double stranded calf thymus DNA immobilized on an electrode surface was used to study the possible DNA-interacting abilities of these compounds towards dsDNA in situ. A remarkable interaction of these compounds with DNA was demonstrated and their potential application as anticancer agents was furthered.
Resumo:
The cytotoxic activity of amino (3a-e), aza-1-antraquinone (4a-e) lapachol derivatives against Ehrlich carcinoma and human K562 leukemia cells was investigated. Cell viability was determined using MTT assay, after 48 (Ehrlich) or 96 h (K562) of culture, and vincristine (for K562 leukemia) and quercetin (for Ehrlich carcinoma) were used as positive controls. The results showed dose-dependent growth-inhibiting activities and that the amino derivatives were active against the assayed cells, whereas the 4a-e derivatives were not. The allylamine derivative 3a was the most active against Ehrlich carcinoma, with IC50 = 16.94 ± 1.25 µM, and against K562 leukemia, with IC50 = 14.11 ± 1.39 µM. The analogous lawsone derivative, 5a, was also active against Ehrlich carcinoma (IC50 = 23.89 ± 2.3 µM), although the 5d and 5e derivatives showed lower activity. The interaction between 3a-d and calf thymus DNA was investigated by fluorimetric titration and the results showed a hyperchromic effect indicating binding to DNA as presented of ethidium bromide, used as positive control. The inhibitory action on DNA-topoisomerase II-a was also evaluated by a relaxation assay of supercoiled DNA plasmid, and the etoposide (200 µM) was used as positive control. Significant inhibitory activities were observed for 3a-d at 200 µM and a partial inhibitory action was observed for lapachol and methoxylapachol.
Resumo:
A targeted, stimuli-responsive, polymeric drug delivery vehicle is being developed in our lab to help alleviate severe side-effects caused by narrow therapeutic window drugs. Targeting specific cell types or organs via proteins, specifically, lectin-mediated targeting holds potential due to the high specificity and affinity of receptor-ligand interactions, rapid internalization, and relative ease of processing. Dextran, a commercially available, biodegradable polymer has been conjugated to doxorubicin and galactosamine to target hepatocytes in a three-step, one-pot synthesis. The loading of doxorubicin and galactose on the conjugates was determined by absorbance at 485 nm and elemental analysis, respectively. Conjugation efficiency based on the amount loaded of each reactant varies from 20% to 50% for doxorubicin and from 2% to 20% for galactosamine. Doxorubicin has also been attached to dextran through an acid-labile hydrazide bond. Doxorubicin acts by intercalating with DNA in the nuclei of cells. The fluorescence of doxorubicin is quenched when it binds to DNA. This allows a fluorescence-based cell-free assay to evaluate the efficacy of the polymer conjugates where we measure the fluorescence of doxorubicin and the conjugates in increasing concentrations of calf thymus DNA. Fluorescence quenching indicates that our conjugates can bind to DNA. The degree of binding increases with polymer molecular weight and substitution of doxorubicin. In cell culture experiments with hepatocytes, the relative uptake of polymer conjugates was evaluated using flow cytometry, and the killing efficiency was determined using the MTT cell proliferation assay. We have found that conjugate uptake is much lower than that of free doxorubicin. Lower uptake of conjugates may increase the maximum dose of drug tolerated by the body. Also, non-galactosylated conjugate uptake is lower than that of the galactosylated conjugate. Microscopy indicates that doxorubicin localizes almost exclusively at the nucleus, whereas the conjugates are present throughout the cell. Doxorubicin linked to dextran through a hydrazide bond was used to achieve improved killing efficiency. Following uptake, the doxorubicin dissociates from the polymer in an endosomal compartment and diffuses to the nucleus. The LC₅₀ of covalently linked doxorubicin is 7.4 μg/mL, whereas that of hydrazide linked doxorubicin is 4.4 μg/mL.