177 resultados para Rhizostoma octopus


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Understanding the spatial integrity and connectivity of jellyfish blooms is important for ecologists and coastal stakeholders alike. Previous studies have shown that the distribution of jellyfish blooms can display a marked consistency in space and time, suggesting that such patterns cannot be attributed to passive processes alone. In the present study, we used a combination of microsatellite markers and mitochondrial cytochrome oxidase I sequences to investigate genetic structuring of the scyphozoan jellyfish Rhizostoma octopus in the Irish and Celtic Seas. The mitochondrial data indicated far higher levels of population differentiation than the microsatellites: ΦST[MT] = 0.300 vs. ΦST[NUC] = 0.013. Simulation studies indicated that the low levels of nuclear differentiation were not the result of limited power because of low levels of polymorphism. These findings, supported by palaeodistribution modelling and mismatch distribution analysis, are consistent with expansion of R. octopus from a single, limited refugium after the Last Glacial Maximum, followed by subsequent isolation, and that the discrepancy between the mitochondrial and nuclear markers is a result of the nuclear loci taking longer to reach mutation–drift equilibrium following the expansion as a result of their four-fold larger effective population size. The populations studied are probably not well connected via gene flow, and thus genetically as well as geographically distinct, although our findings also highlight the need to use a combination of organellar and nuclear markers to enable a more complete understanding of population demography and structure, particularly for species with large effective population sizes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is becoming increasingly evident that jellyfish (Cnidaria: Scyphozoa) play an important role within marine ecosystems, yet our knowledge of their seasonality and reproductive strategies is far from complete. Here, we explore a number of life history hypotheses for three common, yet poorly understood scyphozoan jellyfish (Rhizostoma octopus; Chrysaora hysoscella; Cyanea capillata) found throughout the Irish and Celtic Seas. Specifically, we tested whether (1) the bell diameter/wet weight of stranded medusae increased over time in a manner that suggested a single synchronised reproductive cohort; or (2) whether the range of sizes/weights remained broad throughout the stranding period suggesting the protracted release of ephyrae over many months. Stranding data were collected at five sites between 2003 and 2006 (n = 431 surveys; n = 2401 jellyfish). The relationship between bell diameter and wet weight was determined for each species (using fresh specimens collected at sea) so that estimates of wet weight could also be made for stranded individuals. For each species, the broad size and weight ranges of stranded jellyfish implied that the release of ephyrae may be protracted (albeit to different extents) in each species, with individuals of all sizes present in the water column during the summer months. For R. octopus, there was a general increase in both mean bell diameter and wet weight from January through to June which was driven by an increase in the variance and overall range of both variables during the summer. Lastly, we provide further evidence that rhizostome jellyfish may over-wintering as pelagic medusa which we hypothesise may enable them to capitalise on prey available earlier in the year.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Two techniques are described to calculate energy densities for the bell, gonad and oral arm tissues of three scyphozoan jellyfish (Cyanea capillata, Rhizostoma octopus and Chrysaora hysoscella). First, bomb-calorimetry was used, a technique that is readily available and inexpensive. However, the reliability of this technique for gelatinous material is contentious. Second, further analysis involving the more labour intensive proximate-composition analysis (protein, fat and carbohydrate) was carried out on two species (C capillata and R. octopus). These proximate data were subsequently converted to energy densities. The two techniques (bomb-calorimetry and proximate-composition) gave very similar estimates of energy density. Differences in energy density were found both amongst different species and between different tissues of the same species. Mean ( +/- S.D.) energy density estimates for whole animals from bomb-calorimetry were 0.18 +/- 0.05, 0.11 +/- 0.04, and 0.10 +/- 0.03 kJ g wet mass(-1) for C. capillata, R. octopus, and C. hysoscella respectively. The implications of these low energy densities for species feeding on jellyfish are discussed. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we provide baseline data on the distribution and abundance of Mola mola within the Irish and Celtic Seas, made during aerial surveys from June to October during 2003-2005. These data were considered in conjunction with concurrent observations of three potential jellyfish prey species found throughout the region: Rhizostoma octopus, Chrysaora hysoscella and Cyanea capillata. A total area of 7850 km(2) was surveyed over the three years with an observed abundance of 68 sunfish giving a density of 0.98 ind/100 km(2). Although modest, these findings highlight that the species is more common than once thought around Britain and Ireland and an order of magnitude greater than the other apex jellyfish predator found in the region, the leatherback turtle (Dermochelys coriacea). furthermore, the distribution of sunfish sightings was inconsistent with the extensive aggregations of Rhizostoma octopus found throughout the study area. The modelled distributions of predator-prey co-occurrence (using data for all three jellyfish species) was less than the observed co-occurrence with the implication that neither jellyfish nor sunfish were randomly distributed but co-occurred more in the same areas than expected by chance. Finally, observed sunfish were typically small (similar to 1 in or less) and seen to either bask or actively swim at the surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the marine environment, aerial surveys have historically centred on apex predators, such as pinnipeds, cetaceans and sea birds. However, it is becoming increasingly apparent that the utility of this technique may also extend to subsurface species such as pre-spawning fish stocks and aggregations of jellyfish that occur close to the surface. In light of this, we tested the utility of aerial surveys to provide baseline data for 3 poorly understood scyphozoan jellyfish found throughout British and Irish waters: Rhizostoma octopus, Cyanea capillata and Chrysaora hysoscella. Our principal objectives were to develop a simple sampling protocol to identify and quantify surface aggregations, assess their consistency in space and time, and consider the overall applicability of this technique to the study of gelatinous zooplankton. This approach provided a general understanding of range and relative abundance for each target species, with greatest suitability to the study of R. octopus. For this species it was possible to identify and monitor extensive, temporally consistent and previously undocumented aggregations throughout the Irish Sea, an area spanning thousands of square kilometres. This finding has pronounced implications for ecologists and fisheries managers alike and, moreover, draws attention to the broad utility of aerial surveys for the study of gelatinous aggregations beyond the range of conventional ship-based techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Reports of nuisance jellyfish blooms have increased worldwide during the last half-century, but the possible causes remain unclear.Apersistent difficulty lies in identifying whether blooms occur owing to local or regional processes. This issue can be resolved, in part, by establishing the geographical scales of connectivity among locations, which may be addressed using genetic analyses and oceanographic modelling. We used landscape genetics and Lagrangian modelling of oceanographic dispersal to explore patterns of connectivity in the scyphozoan jellyfish Rhizostoma octopus, which occurs en masse at locations in the Irish Sea and northeastern Atlantic. We found significant genetic structure distinguishing three populations, with both consistencies and inconsistencies with prevailing physical oceanographic patterns. Our analyses identify locations where blooms occur in apparently geographically isolated populations, locations where blooms may be the source or result of migrants, and a location where blooms do not occur consistently and jellyfish are mostly immigrant. Our interdisciplinary approach thus provides a means to ascertain the geographical origins of jellyfish in outbreaks, which may have wide utility as increased international efforts investigate jellyfish blooms. © 2013 The Authors.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

It is becoming increasingly evident that jellyfish (Cnidaria: Scyphozoa) play an important role within marine ecosystems, yet our knowledge of their seasonality and reproductive strategies is far from complete. Here, we explore a number of life history hypotheses for three common, yet poorly understood scyphozoan jellyfish (Rhizostoma octopus; Chrysaora hysoscella; Cyanea capillata) found throughout the Irish and Celtic Seas. Specifically, we tested whether (1) the bell diameter/wet weight of stranded medusae increased over time in a manner that suggested a single synchronised reproductive cohort; or (2) whether the range of sizes/weights remained broad throughout the stranding period suggesting the protracted release of ephyrae over many months. Stranding data were collected at five sites between 2003 and 2006 (n = 431 surveys; n = 2401 jellyfish). The relationship between bell diameter and wet weight was determined for each species (using fresh specimens collected at sea) so that estimates of wet weight could also be made for stranded individuals. For each species, the broad size and weight ranges of stranded jellyfish implied that the release of ephyrae may be protracted (albeit to different extents) in each species, with individuals of all sizes present in the water column during the summer months. For R. octopus, there was a general increase in both mean bell diameter and wet weight from January through to June which was driven by an increase in the variance and overall range of both variables during the summer. Lastly, we provide further evidence that rhizostome jellyfish may over-wintering as pelagic medusa which we hypothesise may enable them to capitalise on prey available earlier in the year.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over-fishing may lead to a decrease in fish abundance and a proliferation of jellyfish. Active movements and prey search might be thought to provide a competitive advantage for fish, but here we use data-loggers to show that the frequently occurring coastal jellyfish (Rhizostoma octopus) does not simply passively drift to encounter prey. Jellyfish (327 days of data from 25 jellyfish with depth collected every 1 min) showed very dynamic vertical movements, with their integrated vertical movement averaging 619.2 m d−1, more than 60 times the water depth where they were tagged. The majority of movement patterns were best approximated by exponential models describing normal random walks. However, jellyfish also showed switching behaviour from exponential patterns to patterns best fitted by a truncated Lévy distribution with exponents (mean μ = 1.96, range 1.2–2.9) close to the theoretical optimum for searching for sparse prey (μopt ≈ 2.0). Complex movements in these ‘simple’ animals may help jellyfish to compete effectively with fish for plankton prey, which may enhance their ability to increase in dominance in perturbed ocean systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Here we provide baseline data on the distribution and abundance of Mola mola within the Irish and Celtic Seas, made during aerial surveys from June to October during 2003–2005. These data were considered in conjunction with concurrent observations of three potential jellyfish prey species found throughout the region: Rhizostoma octopus, Chrysaora hysoscella and Cyanea capillata. A total area of 7850 km2 was surveyed over the three years with an observed abundance of 68 sunfish giving a density of 0.98 ind/100 km2. Although modest, these findings highlight that the species is more common than once thought around Britain and Ireland and an order of magnitude greater than the other apex jellyfish predator found in the region, the leatherback turtle (Dermochelys coriacea). Furthermore, the distribution of sunfish sightings was inconsistent with the extensive aggregations of Rhizostoma octopus found throughout the study area. The modelled distributions of predator–prey co-occurrence (using data for all three jellyfish species) was less than the observed co-occurrence with the implication that neither jellyfish nor sunfish were randomly distributed but co-occurred more in the same areas than expected by chance. Finally, observed sunfish were typically small ([similar]1 m or less) and seen to either bask or actively swim at the surface.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the marine environment, aerial surveys have historically centred on apex predators, such as pinnipeds, cetaceans and sea birds. However, it is becoming increasingly apparent that the utility of this technique may also extend to subsurface species such as pre-spawning fish stocks and aggregations of jellyfish that occur close to the surface. In light of this, we tested the utility of aerial surveys to provide baseline data for 3 poorly understood scyphozoan jellyfish found throughout British and Irish waters: Rhizostoma octopus, Cyanea capillata and Chrysaora hysoscella. Our principal objectives were to develop a simple sampling protocol to identify and quantify surface aggregations, assess their consistency in space and time, and consider the overall applicability of this technique to the study of gelatinous zooplankton. This approach provided a general understanding of range and relative abundance for each target species, with greatest suitability to the study of R. octopus. For this species it was possible to identify and monitor extensive, temporally consistent and previously undocumented aggregations throughout the Irish Sea, an area spanning thousands of square kilometres. This finding has pronounced implications for ecologists and fisheries managers alike and, moreover, draws attention to the broad utility of aerial surveys for the study of gelatinous aggregations beyond the range of conventional ship-based techniques.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leatherback turtles (Dermochelys coriacea) are obligate predators of gelatinous zooplankton. However, the spatial relationship between predator and prey remains poorly understood beyond sporadic and localized reports. To examine how jellyfish (Phylum Cnidaria: Orders Semaeostomeae and Rhizostomeae) might drive the broad-scale distribution of this wide ranging species, we employed aerial surveys to map jellyfish throughout a temperate coastal shelf area bordering the northeast Atlantic. Previously unknown, consistent aggregations of Rhizostoma octopus extending over tens of square kilometers were identified in distinct coastal “hotspots” during consecutive years (2003–2005). Examination of retrospective sightings data (>50 yr) suggested that 22.5% of leatherback distribution could be explained by these hotspots, with the inference that these coastal features may be sufficiently consistent in space and time to drive long-term foraging associations.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cross-flows (winds or currents) affect animal movements [1-3]. Animals can temporarily be carried off course or permanently carried away from their preferred habitat by drift depending on their own traveling speed in relation to that of the flow [1]. Animals able to only weakly fly or swim will be the most impacted (e.g., [4]). To circumvent this problem, animals must be able to detect the effects of flow on their movements and respond to it [1, 2]. Here, we show that a weakly swimming organism, the jellyfish Rhizostoma octopus, can orientate its movements with respect to currents and that this behavior is key to the maintenance of blooms and essential to reduce the probability of stranding. We combined insitu observations with first-time deployment of accelerometers on free-ranging jellyfish and simulated the behavior observed in wild jellyfish within a high-resolution hydrodynamic model. Our results show that jellyfish can actively swim countercurrent in response to current drift, leading to significant life-history benefits, i.e., increased chance of survival and facilitated bloom formation. Current-oriented swimming may be achieved by jellyfish either directly detecting current shear across their body surface [5] or indirectly assessing drift direction using other cues (e.g., magnetic, infrasound). Our coupled behavioral-hydrodynamic model provides new evidence that current-oriented swimming contributes to jellyfish being able to form aggregations of hundreds to millions of individuals for up to several months, which may have substantial ecosystem and socioeconomic consequences [6, 7]. It also contributes to improve predictions of jellyfish blooms' magnitude and movements in coastal waters. Current drift can have major and potentially negative effects on the lives of weakly swimming species in particular. Fossette etal. show that jellyfish modulate their swimming behavior in relation to current. Such oriented swimming has significant life-history benefits, such as increased bloom formation and a reduction of probability of stranding.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jellyfish (Cnidaria: Scyphozoa) are increasingly thought to play a number of important ecosystem roles, but often fundamental knowledge of their distribution, seasonality and inter-annual variability is lacking. Bloom forming species, due to their high densities, can have particularly intense trophic and socio-economic impacts. In northern Europe it is known that one particularly large (up to 30 kg wet weight) bloom forming jellyfish is Rhizostoma spp. Given the potential importance, we set out to review all known records from peer-reviewed and broader public literature of the jellyfish R. octopus (Linnaeus) and R. pulmo (Macri) (Scyphozoa: Rhizostomae) across western Europe. These data revealed distinct hotspots where regular Rhizostoma spp. aggregations appeared to form, with other sites characterized by occasional abundances and a widespread distribution of infrequent observations. Surveys of known R. octopus hotspots around the Irish Sea also revealed marked inter-annual variation with particularly high abundances forming during 2003. The location of such consistent aggregations and inter-annual variances are discussed in relation to physical, climatic and dietary variations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jellyfish (Cnidaria: Scyphozoa) are increasingly thought to play a number of important ecosystem roles, but often fundamental knowledge of their distribution, seasonality and inter-annual variability is lacking. Bloom forming species, due to their high densities, can have particularly intense trophic and socio-economic impacts. In northern Europe it is known that one particularly large (up to 30 kg wet weight) bloom forming jellyfish is Rhizostoma spp. Given the potential importance, we set out to review all known records from peer-reviewed and broader public literature of the jellyfish R. octopus (Linnaeus) and R. pulmo (Macri) (Scyphozoa: Rhizostomae) across western Europe. These data revealed distinct hotspots where regular Rhizostoma spp. aggregations appeared to form, with other sites characterized by occasional abundances and a widespread distribution of infrequent observations. Surveys of known R. octopus hotspots around the Irish Sea also revealed marked inter-annual variation with particularly high abundances forming during 2003. The location of such consistent aggregations and inter-annual variances are discussed in relation to physical, climatic and dietary variations.