6 resultados para Rhizoremediation
Resumo:
Rhizoremediation is the use of microbial populations present in the rhizosphere of plants for environmental cleanup. The idea of this work was that bacteria living in the rhizosphere of a nitrogen-fixing leguminous plant, goat's rue (Galega orientalis), could take part in the degradation of harmful monoaromatic hydrocarbons, such as benzene, toluene and xylene (BTEX), from oil-contaminated soils. In addition to chemical (e.g. pollutant concentration) and physical (e.g. soil structure) information, the knowledge of biological aspects (e.g. bacteria and their catabolic genes) is essential when developing the rhizoremediation into controlled and effective bioremediation practice. Therefore, the need for reliable biomonitoring methods is obvious. The main aims of this thesis were to evaluate the symbiotic G. orientalis - Rhizobium galegae system for rhizoremediation of oil-contaminated soils, to develop molecular methods for biomonitoring, and to apply these methods for studying the microbiology of rhizoremediation. In vitro, Galega plants and rhizobia remained viable in m-toluate concentrations up to 3000 mg/l. Plant growth and nodulation were inhibited in 500 mg/l m-toluate, but were restored when plants were transferred to clean medium. In the greenhouse, Galega showed good growth, nodulation and nitrogen fixation, and developed a strong rhizosphere in soils contaminated with oil or spiked with 2000 mg/l m-toluate. The high aromatic tolerance of R. galegae and the viability of Galega plants in oil-polluted soils proved this legume system to be a promising method for the rhizoremediation of oil-contaminated soils. Molecular biomonitoring methods were designed and/or developed further for bacteria and their degradation genes. A combination of genomic fingerprinting ((GTG)5-PCR), taxonomic ribotyping of 16S rRNA genes and partial 16S rRNA gene sequencing were chosen for molecular grouping of culturable, heterogeneous rhizosphere bacteria. PCR primers specific for the xylE gene were designed for TOL plasmid detection. Amplified enzyme-coding DNA restriction analysis (AEDRA) with AluI was used to profile both TOL plasmids (xylE primers) and, in general, aromatics-degrading plasmids (C230 primers). The sensitivity of the direct monitoring of TOL plasmids in soil was enhanced by nested C23O-xylE-PCR. Rhizosphere bacteria were isolated from the greenhouse and field lysimeter experiments. High genetic diversity was observed among the 50 isolated, m-toluate tolerating rhizosphere bacteria in the form of five major lineages of the Bacteria domain. Gram-positive Rhodococcus, Bacillus and Arthrobacter and gram-negative Pseudomonas were the most abundant genera. The inoculum Pseudomonas putida PaW85/pWW0 was not found in the rhizosphere samples. Even if there were no ecological niches available for the bioaugmentation bacterium itself, its conjugative catabolic plasmid might have had some additional value for other bacterial species and thus, for rhizoremediation. Only 10 to 20% of the isolated, m-toluate tolerating bacterial strains were also able to degrade m-toluate. TOL plasmids were a major group of catabolic plasmids among these bacteria. The ability to degrade m-toluate by using enzymes encoded by a TOL plasmid was detected only in species of the genus Pseudomonas, and the best m-toluate degraders were these Pseudomonas species. Strain-specific differences in degradation abilities were found for P.oryzihabitans and P. migulae: some of these strains harbored a TOL plasmid - a new finding observed in this work, indicating putative horizontal plasmid transfer in the rhizosphere. One P. oryzihabitans strain harbored the pWW0 plasmid that had probably conjugated from the bioaugmentation Pseudomonas. Some P. migulae and P. oryzihabitans strains seemed to harbor both the pWW0- and the pDK1-type TOL plasmid. Alternatively, they might have harbored a TOL plasmid with both the pWW0- and the pDK1-type xylE gene. The breakdown of m-toluate by gram-negative bacteria was not restricted to the TOL pathway. Also some gram-positive Rhodococcus erythropolis and Arthrobacter aurescens strains were able to degrade m-toluate in the absence of a TOL plasmid. Three aspects of the rhizosphere effect of G. orientalis were manifested in oil-contaminated soil in the field: 1) G. orientalis and Pseudomonas bioaugmentation increased the amount of rhizosphere bacteria. G. orientalis especially together with Pseudomonas bioaugmentation increased the numbers of m-toluate utilizing and catechol positive bacteria indicating an increase in degradation potential. 2) Also the bacterial diversity, when measured as the amount of ribotypes, was increased in the Galega rhizosphere with or without Pseudomonas bioaugmentation. However, the diversity of m-toluate utilizing bacteria did not significantly increase. At the community level, by using the 16S rRNA gene PCR-DGGE method, the highest diversity of species was also observed in vegetated soils compared with non-vegetated soils. Diversified communities may best guarantee the overall success in rhizoremediation by offering various genetic machineries for catabolic processes. 3) At the end of the experiment, no TOL plasmid could be detected by direct DNA analysis in soil treated with both G. orientalis and Pseudomonas. The detection limit for TOL plasmids was encountered indicating decreased amount of degradation plasmids and thus, the success of rhizoremediation. The use of G. orientalis for rhizoremediation is unique. In this thesis new information was obtained about the rhizosphere effect of Galega orientalis in BTEX contaminated soils. The molecular biomonitoring methods can be applied for several purposes within environmental biotechnology, such as for evaluating the intrinsic biodegradation potential, monitoring the enhanced bioremediation, and estimating the success of bioremediation. Environmental protection by using nature's own resources and thus, acting according to the principle of sustainable development, would be both economically and environmentally beneficial for society. Keywords: molecular biomonitoring, genetic fingerprinting, soil bacteria, bacterial diversity, TOL plasmid, catabolic genes, horizontal gene transfer, rhizoremediation, rhizosphere effect, Galega orientalis, aerobic biodegradation, petroleum hydrocarbons, BTEX
Resumo:
A plant growth-promoting bacterial (PGPB) strain SC2b was isolated from the rhizosphere of Sedum plumbizincicola grown in lead (Pb)/zinc (Zn) mine soils and characterized as Bacillus sp. based on (1) morphological and biochemical characteristics and (2) partial 16S ribosomal DNA sequencing analysis. Strain SC2b exhibited high levels of resistance to cadmium (Cd) (300 mg/L), Zn (730 mg/L), and Pb (1400 mg/L). This strain also showed various plant growth-promoting (PGP) features such as utilization of 1-aminocyclopropane-1-carboxylate, solubilization of phosphate, and production of indole-3-acetic acid and siderophore. The strain mobilized high concentration of heavy metals from soils and exhibited different biosorption capacity toward the tested metal ions. Strain SC2b was further assessed for PGP activity by phytagar assay with a model plant Brassica napus. Inoculation of SC2b increased the biomass and vigor index of B. napus. Considering such potential, a pot experiment was conducted to assess the effects of inoculating the metal-resistant PGPB SC2b on growth and uptake of Cd, Zn and Pb by S. plumbizincicola in metal-contaminated agricultural soils. Inoculation with SC2b elevated the shoot and root biomass and leaf chlorophyll content of S. plumbizincicola. Similarly, plants inoculated with SC2b demonstrated markedly higher Cd and Zn accumulation in the root and shoot system, indicating that SC2b enhanced Cd and Zn uptake by S. plumbizincicola through metal mobilization or plant-microbial mediated changes in chemical or biological soil properties. Data demonstrated that the PGPB Bacillus sp. SC2b might serve as a future biofertilizer and an effective metal mobilizing bioinoculant for rhizoremediation of metal polluted soils.
Resumo:
Microbial degradation pathways play a key role in the detoxification and the mineralization of polyaromatic hydrocarbons (PAHs), which are widespread pollutants in soil and constituents of petroleum hydrocarbons. In microbiology the aromatic degradation pathways are traditionally studied from single bacterial strains with capacity to degrade certain pollutant. In soil the degradation of aromatics is performed by a diverse community of micro-organisms. The aim of this thesis was to study biodegradation on different levels starting from a versatile aromatic degrader Sphingobium sp. HV3 and its megaplasmid, extending to revelation of diversity of key catabolic enzymes in the environment and finally studying birch rhizoremediation in PAH-polluted soil. To understand biodegradation of aromatics on bacterial species level, the aromatic degradation capacity of Sphingobium sp. HV3 and the role of the plasmid pSKY4, was studied. Toluene, m-xylene, biphenyl, fluorene, phenanthrene were detected as carbon and energy sources of the HV3 strain. Tn5 transposon mutagenesis linked the degradation capacity of toluene, m-xylene, biphenyl and naphthalene to the pSKY4 plasmid and qPCR expression analysis showed that plasmid extradiol dioxygenases genes (bphC and xylE) are inducted by phenanthrene, m-xylene and biphenyl whereas the 2,4-dichlorophenoxyacetic acid herbicide induced the chlorocatechol 1,2-dioxygenase gene (tfdC) from the ortho-pathway. A method to study upper meta-pathway extradiol dioxygenase gene diversity in soil was developed. The extradiol dioxygenases catalyse cleavage of the aromatic ring between a hydroxylated carbon and an adjacent non-hydroxylated carbon (meta-cleavage). A high diversity of extradiol dioxygenases were detected from polluted soils. The detected extradiol dioxygenases showed sequence similarity to known catabolic genes of Alpha-, Beta-, and Gammaproteobacteria. Five groups of extradiol dioxygenases contained sequences with no close homologues in the database, representing novel genes. In rhizoremediation experiment with birch (Betula pendula) treatment specific changes of extradiol dioxygenase communities were shown. PAH pollution changed the bulk soil extradiol dioxygenase community structure and birch rhizosphere contained a more diverse extradiol dioxygenase community than the bulk soil showing a rhizosphere effect. The degradation of pyrene in soil was enhanced with birch seedlings compared to soil without birch. The complete 280,923 kb nucleotide sequence of pSKY4 plasmid was determined. The open reading frames of pSKY4 were divided into putative conjugative transfer, aromatic degradation, replication/maintaining and transposition/integration function-encoding proteins. Aromatic degradation orfs shared high similarity to corresponding genes in pNL1, a plasmid from the deep subsurface strain Novosphingobium aromaticivorans F199. The plasmid backbones were considerably more divergent with lower similarity, which suggests that the aromatic pathway has functioned as a plasmid independent mobile genetic element. The functional diversity of microbial communities in soil is still largely unknown. Several novel clusters of extradiol dioxygenases representing catabolic bacteria, whose function, biodegradation pathways and phylogenetic position is not known were amplified with single primer pair from polluted soils. These extradiol dioxygenase communities were shown to change upon PAH pollution, which indicates that their hosts function in PAH biodegradation in soil. Although the degradation pathways of specific bacterial species are substantially better depicted than pathways in situ, the evolution of degradation pathways for the xenobiotic compounds is largely unknown. The pSKY4 plasmid contains aromatic degradation genes in putative mobile genetic element causing flexibility/instability to the pathway. The localisation of the aromatic biodegradation pathway in mobile genetic elements suggests that gene transfer and rearrangements are a competetive advantage for Sphingomonas bacteria in the environment.
Resumo:
Rhizoremediation is a bioremediation technique whereby enhanced microbial degradation of organic contaminants occurs within the plant root zone (rhizosphere). It is considered an effective and affordable ‘green technology’ for remediating soils contaminated with petroleum hydrocarbons (PHCs). This paper critically reviews the potential role of root exuded compounds in rhizoremediation, with emphasis on commonly exuded low molecular weight aliphatic organic acid anions (carboxylates). The extent to which remediation is achieved shows wide disparity among plant species. Therefore, plant selection is crucial for the advancement and widespread adoption of this technology. Root exudation is speculated to be one of the predominant factors leading to microbial changes in the rhizosphere and thus the potential driver behind enhanced petroleum biodegradation. Carboxylates can form a significant component of the root exudate mixture and are hypothesised to enhance petroleum biodegradation by: i) providing an easily degradable energy source; ii) increasing phosphorus supply; and/or iii) enhancing the contaminant bioavailability. These differing hypotheses, which are not mutually exclusive, require further investigation to progress our understanding of plant–microbe interactions with the aim to improve plant species selection and the efficacy of rhizoremediation.
Resumo:
The investigation of phylogenetic diversity and functionality of complex microbial communities in relation to changes in the environmental conditions represents a major challenge of microbial ecology research. Nowadays, particular attention is paid to microbial communities occurring at environmental sites contaminated by recalcitrant and toxic organic compounds. Extended research has evidenced that such communities evolve some metabolic abilities leading to the partial degradation or complete mineralization of the contaminants. Determination of such biodegradation potential can be the starting point for the development of cost effective biotechnological processes for the bioremediation of contaminated matrices. This work showed how metagenomics-based microbial ecology investigations supported the choice or the development of three different bioremediation strategies. First, PCR-DGGE and PCR-cloning approaches served the molecular characterization of microbial communities enriched through sequential development stages of an aerobic cometabolic process for the treatment of groundwater contaminated by chlorinated aliphatic hydrocarbons inside an immobilized-biomass packed bed bioreactor (PBR). In this case the analyses revealed homogeneous growth and structure of immobilized communities throughout the PBR and the occurrence of dominant microbial phylotypes of the genera Rhodococcus, Comamonas and Acidovorax, which probably drive the biodegradation process. The same molecular approaches were employed to characterize sludge microbial communities selected and enriched during the treatment of municipal wastewater coupled with the production of polyhydroxyalkanoates (PHA). Known PHA-accumulating microorganisms identified were affiliated with the genera Zooglea, Acidovorax and Hydrogenophaga. Finally, the molecular investigation concerned communities of polycyclic aromatic hydrocarbon (PAH) contaminated soil subjected to rhizoremediation with willow roots or fertilization-based treatments. The metabolic ability to biodegrade naphthalene, as a representative model for PAH, was assessed by means of stable isotope probing in combination with high-throughput sequencing analysis. The phylogenetic diversity of microbial populations able to derive carbon from naphthalene was evaluated as a function of the type of treatment.
Resumo:
Rhizosphere enhanced biodegradation of organic pollutants has been reported frequently and a stimulatory role for specific components of rhizodeposits postulated. As rhizodeposit composition is a function of plant species and soil type, we compared the effect of Lolium perenne and Trifolium pratense grown in two different soils (a sandy silt loam: pH 4, 2.8% OC, no previous 2,4-D exposure and a silt loam: pH 6.5, 4.3% OC, previous 2,4-D exposure) on the mineralization of the herbicide 2,4-D (2,4-dichlorophenoxyacetic acid). We investigated the relationship of mineralization kinetics to dehydrogenase activity, most probable number of 2,4-D degraders (MPN2,4-D) and 2,4-D degrader composition (using sequence analysis of the gene encoding alpha-ketoglutarate/2,4-D dioxygenase (tfdA)). There were significant (P < 0.01) plant-soil interaction effects on MPN2,4-D and 2,4-D mineralization kinetics (e.g. T pratense rhizodeposits enhanced the maximum mineralization rate by 30% in the acid sandy silt loam soil, but not in the neutral silt loam soil). Differences in mineralization kinetics could not be ascribed to 2,4-D degrader composition as both soils had tfdA sequences which clustered with tfdAs representative of two distinct classes of 2,4-D degrader: canonical R. eutropha JMP134-like and oligotrophic alpha-proteobacterial-like. Other explanations for the differential rhizodeposit effect between soils and plants (e.g. nutrient competition effects) are discussed. Our findings stress that complexity of soil-plant-microbe interactions in the rhizosphere make the occurrence and extent of rhizosphere-enhanced xenobiotic degradation difficult to predict.