990 resultados para Rhinovirus 3c Protease


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Human rhinoviruses, the most important etiologic agents of the common cold, are messenger-active single-stranded monocistronic RNA viruses that have evolved a highly complex cascade of proteolytic processing events to control viral gene expression and replication. Most maturation cleavages within the precursor polyprotein are mediated by rhinovirus 3C protease (or its immediate precursor, 3CD), a cysteine protease with a trypsin-like polypeptide fold. High-resolution crystal structures of the enzyme from three viral serotypes have been used for the design and elaboration of 3C protease inhibitors representing different structural and chemical classes. Inhibitors having α,β-unsaturated carbonyl groups combined with peptidyl-binding elements specific for 3C protease undergo a Michael reaction mediated by nucleophilic addition of the enzyme’s catalytic Cys-147, resulting in covalent-bond formation and irreversible inactivation of the viral protease. Direct inhibition of 3C proteolytic activity in virally infected cells treated with these compounds can be inferred from dose-dependent accumulations of viral precursor polyproteins as determined by SDS/PAGE analysis of radiolabeled proteins. Cocrystal-structure-assisted optimization of 3C-protease-directed Michael acceptors has yielded molecules having extremely rapid in vitro inactivation of the viral protease, potent antiviral activity against multiple rhinovirus serotypes and low cellular toxicity. Recently, one compound in this series, AG7088, has entered clinical trials.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Foot-and-mouth disease virus (FMDV) is a significant economically and distributed globally pathogen of Artiodactyla. Current vaccines are chemically inactivated whole virus particles that require large-scale virus growth in strict bio-containment with the associated risks of accidental release or incomplete inactivation. Non-infectious empty capsids are structural mimics of authentic particles with no associated risk and constitute an alternate vaccine candidate. Capsids self-assemble from the processed virus structural proteins, VP0, VP3 and VP1, which are released from the structural protein precursor P1-2A by the action of the virus-encoded 3C protease. To date recombinant empty capsid assembly has been limited by poor expression levels, restricting the development of empty capsids as a viable vaccine. Here expression of the FMDV structural protein precursor P1-2A in insect cells is shown to be efficient but linkage of the cognate 3C protease to the C-terminus reduces expression significantly. Inactivation of the 3C enzyme in a P1-2A-3C cassette allows expression and intermediate levels of 3C activity resulted in efficient processing of the P1-2A precursor into the structural proteins which assembled into empty capsids. Expression was independent of the insect host cell background and leads to capsids that are recognised as authentic by a range of anti-FMDV bovine sera suggesting their feasibility as an alternate vaccine.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The three-dimensional structures of the inactive protein precursors (zymogens) of the serine, cysteine, aspartic, and metalloprotease classes of proteolytic enzymes are known. Comparisons of these structures with those of the mature, active proteases reveal that, in general, the preformed, active conformations of the residues involved in catalysis are rendered sterically inaccessible to substrates by the residues of the zymogens’ N-terminal extensions or prosegments. The prosegments interact in nonsubstrate-like fashions with the residues of the active sites in most of the cases. The gastric aspartic proteases have a well-characterized zymogen conversion pathway. Structures of human progastricsin, the inactive intermediate 2, and active human pepsin are known and have been used to define the conversion pathway. The structure of the zymogen precursor of plasmepsin II, the malarial aspartic protease, shows a new twist on the mode of inactivation used by the gastric zymogens. The prosegment of proplasmepsin disrupts the active conformation of the two catalytic aspartic acid residues by inducing a major reorientation of the two domains of the mature protease. The picornaviral 2A and 3C proteases have a chymotrypsin-like tertiary structure but with a cysteine nucleophile. These enzymes cleave themselves from the viral polyprotein in cis (intramolecular cleavage) and carry out trans cleavages of other scissile peptides important for the virus life cycle. Although the structure of the precursor viral polyprotein is unknown, it probably resembles the organization of the proenzymes of the bacterial serine proteases, subtilisin, and α-lytic protease. Cleavage of the prosegment is known to occur in cis for these precursor molecules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Highly potent biotoxins like Pseudomonas exotoxin A (ETA) are attractive payloads for tumor targeting. However, despite replacement of the natural cell-binding domain of ETA by tumor-selective antibodies or alternative binding proteins like designed ankyrin repeat proteins (DARPins) the therapeutic window of such fusion toxins is still limited by target-independent cellular uptake, resulting in toxicity in normal tissues. Furthermore, the strong immunogenicity of the bacterial toxin precludes repeated administration in most patients. Site-specific modification to convert ETA into a prodrug-like toxin which is reactivated specifically in the tumor, and at the same time has a longer circulation half-life and is less immunogenic, is therefore appealing. To engineer a prodrug-like fusion toxin consisting of the anti-EpCAM DARPin Ec1 and a domain I-deleted variant of ETA (ETA″), we used strain-promoted azide alkyne cycloaddition for bioorthogonal conjugation of linear or branched polyethylene glycol (PEG) polymers at defined positions within the toxin moiety. Reversibility of the shielding was provided by a designed peptide linker containing the cleavage site for the rhinovirus 3C model protease. We identified two distinct sites, one within the catalytic domain and one close to the C-terminal KDEL sequence of Ec1-ETA″, simultaneous PEGylation of which resulted in up to 1000-fold lower cytotoxicity in EpCAM-positive tumor cells. Importantly, the potency of the fusion toxin was fully restored by proteolytic unveiling. Upon systemic administration in mice, PEGylated Ec1-ETA″ was much better tolerated than Ec1-ETA″; it showed a longer circulation half-life and an almost 10-fold increased area under the curve (AUC). Our strategy of engineering prodrug-like fusion toxins by bioorthogonal veiling opens new possibilities for targeting tumors with more specificity and efficacy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Equine rhinovirus 1 (ERhV1) is a respiratory pathogen of horses which has an uncertain taxonomic status. We have determined the nucleotide sequence of the ERhV1 genome except for a small region at the 5' end. The predicted polyprotein was encoded by 6741 nucleotides and possessed a typical picornavirus proteolytic cleavage pattern, including a leader polypeptide. The genomic structure and predicted amino acid sequence of ERhV1 were more similar to those of foot-and-mouth disease viruses (FMDVs), the only members of the aphthovirus genus, than to those of other picornaviruses. Features which were most similar to FMDV included a 16-amino acid 2A protein which was 87.5% identical in sequence of FMDV 2A, a leader (L) protein similar in size to FMDV Lab and the possibility of a truncated L protein similar in size to FMDV Lb, and a 3C protease which recognizes different cleavage sites. However, unlike FMDV, ERhV1 had only one copy of the 3B (VPg) polypeptide. The phylogenetic relationships of the ERhV1 sequence and nucleotide sequences of representative species of the five genera of the family Picornaviridae were examined. Nucleotide sequences coding for the complete polyprotein, the RNA polymerase, and VP1 were analyzed separately. The phylogenetic trees confirmed that ERhV1 was more closely related to FMDV than to other picornaviruses and suggested that ERhV1 may be a member, albeit very distant, of the aphthovirus genus.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Foot-and-mouth disease (FMD) is one of the most feared diseases of livestock worldwide. Vaccination has been a very effective weapon in controlling the disease, however a number of concerns with the current vaccine including the inability of approved diagnostic tests to reliably distinguish vaccinated from infected animals and the need for high containment facilities for vaccine production, have limited its use during outbreaks in countries previously free of the disease. A number of FMD vaccine candidates have been tested and a replication-defective human adenovirus type 5 (Ad5) vector containing the FMDV capsid (P1-2A) and 3C protease coding regions has been shown to completely protect pigs against challenge with the homologous virus (FMDV A12 and A24). An Ad5-P1-2A+3C vaccine for FMDV O1 Campos (Ad5-O1C), however, only induced a low FMDV-specific neutralizing antibody response in swine potency tests. Granulocyte-macrophage colony-stimulating factor (GM-CSF) has been successfully used to stimulate the immune response in vaccine formulations against a number of diseases, including HIV, hepatitis C and B. To attempt to improve the FMDV-specific immune response induced by Ad5-O1C, we inoculated swine with Ad5-O1C and an Ad5 vector containing the gene for porcine GM-CSF (pGM-CSF). However, in the conditions used in this trial, pGM-CSF did not improve the immune response to Ad5-O1C and adversely affected the level of protection of swine challenged with homologous FMDV.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Apis mellifera L., the European honeybee, is a crucial pollinator of many important agricultural crops in the United States. Recently, honeybee colonies have been affected by Colony Collapse Disorder (CCD), a disorder in which the colony fails due to the disappearance of a key functional group of worker bees. Though no direct causalrelationship has been confirmed, hives that experience CCD have been shown to have a high incidence of Deformed Wing Virus (DWV), a common honeybee virus. While the genome sequence and gene-order of DWV has been analyzed fairly recently, few other studies have been performed to understand the molecular characterization of the virus.Since little is known about where DWV proteins localize in infected host cells, the objective of this project was to determine the subcellular localization of two of the important non-structural proteins that are encoded in the DWV genome. This project focused on the protein 3C, an autocatalytic protease which cleaves itself from a longer polyprotein and helps to cut all of the other proteins apart from one another so that they can become functional, and 3D, the RNA-dependent RNA polymerase (RdRp) which is critical for replication of the virus because it copies the viral genome. By tagging nested constructs containing these two proteins and tracking where they localized in living cells, this study aimed to better understand the replication of DWV and to elicit possible targetsfor further research on how to control the virus. Since DWV is a picorna-like virus, distantly related to human viruses such as polio, and picornavirus non-structural proteins aggregate at cellular membranes during viral replication, the major hypothesis was that the 3C and 3CD proteins would localize at cellular organelle membranes as well. Using confocal microscopy, both proteins were found to localize in the cytoplasm, but the 3CDprotein was found to be mostly diffuse cytoplasmic, and the 3C protein was found to localize more specifically on membranous structures just outside of the nucleus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this work was to evaluate the influence of Protease Inhibitors (PI) on the occurrence of oral candidiasis in 111 HIV+ patients under PI therapy (Group A). The controls consisted of 56 patients that were not using PI drugs (Group B) and 26 patients that were not using any drugs for HIV therapy (Group C). The patient's cd4 cell counts were taken in account for the correlations. One hundred and ninety three patients were evaluated. The PI did not affect the prevalence of oral candidiasis (p = 0.158) or the frequency of C. albicans isolates (p = 0.133). Patients with lower cd4 cell counts showed a higher frequency of C. albicans isolates (p = 0.046) and a greater occurrence of oral candidiasis (p = 0.036).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The immunogenic properties of cysteine proteases obtained from excretory/secretory products (ES) of Haemonchus contortus were investigated with a fraction purified with a recombinant H. contortus cystatin affinity column. The enrichment of H. contortus ES for cysteine protease was confirmed with substrate SDS-PAGE gels since the cystatin-binding fraction activity was three times higher than total ES, despite representing only 3% of total ES. This activity was inhibited by a specific cysteine protease inhibitor (E64) and by recombinant cystatin. The one-dimensional profile of the cystatin-binding fraction displayed a single band with a molecular mass of 43 kDa. Mass spectrometry showed this to be AC-5, a cathepsin B-like cysteine protease which had not been identified in ES products of H. contortus before. The cystatin binding fraction was tested as an immunogen in lambs which were vaccinated three times (week 0, 2.5 and 5), challenged with 10 000 L3 H. contortus (week 6) before necropsy and compared to unvaccinated challenge controls and another group given total ES (n = 10 per group). The group vaccinated with cystatin-binding proteins showed 36% and 32% mean worm burden and eggs per gram of faeces (EPG) reductions, respectively, compared to the controls but total ES was almost without effect. After challenge the cystatin-binding proteins induced significantly higher local and systemic ES specific IgA and IgG responses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To investigate a possible role for human rhinovirus C in respiratory exacerbations of children with cystic fibrosis, we conducted microbiologic testing on respiratory specimens from 103 such patients in Sao Paulo, Brazil, during 2006-2007. A significant association was found between the presence of human rhinovirus C and respiratory exacerbations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Entry inhibitor is a new class of drugs that target the viral envelope protein. This region is variable; hence resistance to these drugs may be present before treatment. The aim of this study was to analyze the frequency of patients failing treatment with transcriptase reverse and protease inhibitors that would respond to the entry inhibitors Enfuvirtide, Maraviroc, and BMS-806. The study included 100 HIV-1 positive patients from one outpatient clinic in the city of Sao Paulo, for whom a genotype test was requested due to treatment failure. Proviral DNA was amplified and sequenced for regions of gp120 and gp41. A total of 80 could be sequenced and from those, 73 (91.3%), 5 (6.3%) and 2 (2.5%) were classified as subtype B, F, and recombinants (B/F and B/C), respectively. CXCR4 co-receptor use was predicted in 30% of the strains. Primary resistance to Enfuvirtide was found in 1.3%, following the AIDS Society consensus list, and 10% would be considered resistant if a broader criterion was used. Resistance to BMS-806 was higher; 6 (7.5%), and was associated to non-B strains. Strikingly, 27.5% of samples harbored one or more mutation among A316T, I323V, and S405A, which have been related to decreased susceptibility of Maraviroc; 15% of them among viruses predictive to be R5. A more common mutation was A316T, which was associated to the Brazilian B strain harboring the GWGR motif at the tip of V3 loop and their derivative sequences. These results may be impact guidelines for genotype testing and treatment in Brazil.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, 222 genome survey sequences were generated for Trypanosoma rangeli strain P07 isolated from an opossum (Didelphis albiventris) in Minas Gerais State, Brazil. T. rangeli sequences were compared by BLASTX (Basic Local Alignment Search Tool X) analysis with the assembled contigs of Leishmania braziliensis, Leishmania infantum, Leishmania major, Trypanosoma brucei, and Trypanosoma cruzi. Results revealed that 82% (182/222) of the sequences were associated with predicted proteins described, whereas 18% (40/222) of the sequences did not show significant identity with sequences deposited in databases, suggesting that they may represent T. rangeli-specific sequences. Among the 182 predicted sequences, 179 (80.6%) had the highest similarity with T. cruzi, 2 (0.9%) with T. brucei, and 1 (0.5%) with L. braziliensis. Computer analysis permitted the identification of members of various gene families described for trypanosomatids in the genome of T. rangeli, such as trans-sialidases, mucin-associated surface proteins, and major surface proteases (MSP or gp63). This is the first report identifying sequences of the MSP family in T. rangeli. Multiple sequence alignments showed that the predicted MSP of T. rangeli presented the typical characteristics of metalloproteases, such as the presence of the HEXXH motif, which corresponds to a region previously associated with the catalytic site of the enzyme, and various cysteine and proline residues, which are conserved among MSPs of different trypanosomatid species. Reverse transcriptase-polymerase chain reaction analysis revealed the presence of MSP transcripts in epimastigote forms of T. rangeli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Perseus galaxy cluster is known to present multiple and misaligned pairs of cavities seen in X-rays, as well as twisted kiloparsec-scale jets at radio wavelengths; both morphologies suggest that the active galactic nucleus (AGN) jet is subject to precession. In this work, we performed three-dimensional hydrodynamical simulations of the interaction between a precessing AGN jet and the warm intracluster medium plasma, whose dynamics are coupled to a Navarro-Frenk-White dark matter gravitational potential. The AGN jet inflates cavities that become buoyantly unstable and rise up out of the cluster core. We found that under certain circumstances precession can originate multiple pairs of bubbles. For the physical conditions in the Perseus cluster, multiple pairs of bubbles are obtained for a jet precession opening angle >40 degrees acting for at least three precession periods, reproducing both radio and X-ray maps well. Based on such conditions, assuming that the Bardeen-Peterson effect is dominant, we studied the evolution of the precession opening angle of this system. We were able to constrain the ratio between the accretion disk and the black hole angular momenta as 0.7-1.4. We were also able to constrain the present precession angle to 30 degrees-40 degrees, as well as the approximate age of the inflated bubbles to 100-150 Myr.