999 resultados para Rhesus protein
Resumo:
Mammalian glycosylated rhesus (Rh) proteins include the erythroid RhAG and the nonerythroid RhBG and RhCG. RhBG and RhCG are expressed in multiple tissues, including hepatocytes and the collecting duct (CD) of the kidney. Here, we expressed human RhAG, RhBG and RhCG in Xenopus oocytes (vs. H2O-injected control oocytes) and used microelectrodes to monitor the maximum transient change in surface pH (ΔpHS) caused by exposing the same oocyte to 5 % CO2/33 mM HCO3 − (an increase) or 0.5 mM NH3/NH4 + (a decrease). Subtracting the respective values for day-matched, H2O-injected control oocytes yielded channel-specific values (*). (ΔpH∗S)CO2 and (−ΔpH∗S)NH3 were each significantly >0 for all channels, indicating that RhBG and RhCG—like RhAG—can carry CO2 and NH3. We also investigated the role of a conserved aspartate residue, which was reported to inhibit NH3 transport. However, surface biotinylation experiments indicate the mutants RhBGD178N and RhCGD177N have at most a very low abundance in the oocyte plasma membrane. We demonstrate for the first time that RhBG and RhCG—like RhAG—have significant CO2 permeability, and we confirm that RhAG, RhBG and RhCG all have significant NH3 permeability. However, as evidenced by (ΔpH∗S)CO2/(−ΔpH∗S)NH3 values, we could not distinguish among the CO2/NH3 permeability ratios for RhAG, RhBG and RhCG. Finally, we propose a mechanism whereby RhBG and RhCG contribute to acid secretion in the CD by enhancing the transport of not only NH3 but also CO2 across the membranes of CD cells.
Resumo:
BACKGROUND: The deletion of three adjacent nucleotides in an exon may cause the lack of a single amino acid, while the protein sequence remains otherwise unchanged. Only one such in-frame deletion is known in the two RH genes, represented by the RHCE allele ceBP expressing a "very weak e antigen." STUDY DESIGN AND METHODS: Blood donor samples were recognized because of discrepant results of D phenotyping. Six samples came from Switzerland and one from Northern Germany. The molecular structures were determined by genomic DNA nucleotide sequencing of RHD. RESULTS: Two different variant D antigens were explained by RHD alleles harboring one in-frame triplet deletion each. Both single-amino-acid deletions led to partial D phenotypes with weak D antigen expression. Because of their D category V-like phenotypes, the RHD(Arg229del) allele was dubbed DVL-1 and the RHD(Lys235del) allele DVL-2. These in-frame triplet deletions are located in GAGAA or GAAGA repeats of the RHD exon 5. CONCLUSION: Partial D may be caused by a single-amino-acid deletion in RhD. The altered RhD protein segments in DVL types are adjacent to the extracellular loop 4, which constitutes one of the most immunogenic parts of the D antigen. These RhD protein segments are also altered in all DV, which may explain the similarity in phenotype. At the nucleotide level, the triplet deletions may have resulted from replication slippage. A total of nine amino acid positions in an Rhesus protein may be affected by this mechanism.
Resumo:
An effective human immunodeficiency virus type 1 (HIV-1) vaccine must induce protective antibody responses, as well as CD4(+) and CD8(+) T cell responses, that can be effective despite extraordinary diversity of HIV-1. The consensus and mosaic immunogens are complete but artificial proteins, computationally designed to elicit immune responses with improved cross-reactive breadth, to attempt to overcome the challenge of global HIV diversity. In this study, we have compared the immunogenicity of a transmitted-founder (T/F) B clade Env (B.1059), a global group M consensus Env (Con-S), and a global trivalent mosaic Env protein in rhesus macaques. These antigens were delivered using a DNA prime-recombinant NYVAC (rNYVAC) vector and Env protein boost vaccination strategy. While Con-S Env was a single sequence, mosaic immunogens were a set of three Envs optimized to include the most common forms of potential T cell epitopes. Both Con-S and mosaic sequences retained common amino acids encompassed by both antibody and T cell epitopes and were central to globally circulating strains. Mosaics and Con-S Envs expressed as full-length proteins bound well to a number of neutralizing antibodies with discontinuous epitopes. Also, both consensus and mosaic immunogens induced significantly higher gamma interferon (IFN-γ) enzyme-linked immunosorbent spot assay (ELISpot) responses than B.1059 immunogen. Immunization with these proteins, particularly Con-S, also induced significantly higher neutralizing antibodies to viruses than B.1059 Env, primarily to tier 1 viruses. Both Con-S and mosaics stimulated more potent CD8-T cell responses against heterologous Envs than did B.1059. Both antibody and cellular data from this study strengthen the concept of using in silico-designed centralized immunogens for global HIV-1 vaccine development strategies. IMPORTANCE: There is an increasing appreciation for the importance of vaccine-induced anti-Env antibody responses for preventing HIV-1 acquisition. This nonhuman primate study demonstrates that in silico-designed global HIV-1 immunogens, designed for a human clinical trial, are capable of eliciting not only T lymphocyte responses but also potent anti-Env antibody responses.
Resumo:
Ageing results in a progressive, intrinsic and generalised imbalance of the control of regulatory systems. A key manifestation of this complex biological process includes the attenuation of the universal stress response. Here we provide the first global assessment of the ageing process as it affects the heat shock response, utilising human peripheral lymphocytes and cDNA microarray analysis. The genomic approach employed in our preliminary study was supplemented with a proteomic approach. In addition, the current study correlates the in vivo total antioxidant status with the age-related differential gene expression as well as the translational kinetics of heat shock proteins (hsps). Most of the genes encoding stress response proteins on the 4224 element microarray used in this study were significantly elevated after heat shock treatment of lymphocytes obtained from both young and old individuals albeit to a greater extent in the young. Cell signaling and signal transduction genes as well as some oxidoreductases showed varied response. Results from translational kinetics of induction of major hsps, from 0 to 24 It recovery period were broadly consistent with the differential expression of HSC 70 and HSP 40 genes. Total antioxidant levels in plasma from old individuals were found to be significantly lower by comparison with young, in agreement with the widely acknowledged role of oxidant homeostasis in the ageing process. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
A hallmark of group/species A rotavirus (RVA) replication in MA-104 cells is the logarithmic increase in viral mRNAs that occurs four-12 h post-infection. Viral protein synthesis typically lags closely behind mRNA synthesis but continues after mRNA levels plateau. However, RVA non-structural protein 1 (NSP1) is present at very low levels throughout viral replication despite showing robust protein synthesis. NSP1 has the contrasting properties of being susceptible to proteasomal degradation, but being stabilised against proteasomal degradation by viral proteins and/or viral mRNAs. We aimed to determine the kinetics of the accumulation and intracellular distribution of NSP1 in MA-104 cells infected with rhesus rotavirus (RRV). NSP1 preferentially localises to the perinuclear region of the cytoplasm of infected cells, forming abundant granules that are heterogeneous in size. Late in infection, large NSP1 granules predominate, coincident with a shift from low to high NSP1 expression levels. Our results indicate that rotavirus NSP1 is a late viral protein in MA-104 cells infected with RRV, presumably as a result of altered protein turnover.
Resumo:
Introduction: Small for gestational age (SGA) is an important problem affecting 10% of pregnancies and is associated with significant perinatal morbidity. In about 80% of cases, a probable etiology or a major risk factor can be identified. But almost 20% of SGA cases are considered unexplained. The 60-kDa heat shock protein (HSP60) is a highly immunogenic protein whose synthesis is greatly upregulated under nonphysiological conditions. Bacterial and human HSP60 share a high degree of sequence homology, and immunity to conserved epitopes may result in development of autoimmunity following a bacterial infection. We hypothesized that unexplained SGA could be the consequence of immune sensitization to human HSP60. Methods: Unexplained SGA fetuses were identified by ultrasound biometry with normal Doppler velocimetry and with no detectable maternal or fetal abnormalities. Fetal sera were obtained by cordocentesis performed for a karyotype analysis in cases of unexplained SGA (study group) or for screening of Rhesus incompatibility (control group). Fetal sera were tested for HSP60 antigen and for IgG and IgM anti-HSP60 by ELISA as well as for other immune and hematological parameters. Results: Maternal parameters were similar between the 12 study cases and the 23 control cases. The mean gestational age at cordocentesis was 29 weeks. IgM anti-HSP60 was detected in 12 cases (100%) and in no controls (p < 0.00017), while IgG anti-HSP60 was detected in 7 cases (58%) and only 1 control (p < 0.001). Three of the 4 cases with the highest IgM antibody levels died. There were no differences in fetal serum levels of HSP60 antigen or other immune and hematological markers between the two groups. Conclusion: Fetuses with unexplained SGA are positive for IgM and IgG antibody to human HSP60 and the specific IgM antibody level is predictive of fetal mortality. Detection of these antibodies indicates that a placental perturbation and a fetal autoimmune reaction to HSP60 are associated with this developmental delay.
Resumo:
UNLABELLED: We compared the HIV-1-specific cellular and humoral immune responses elicited in rhesus macaques immunized with two poxvirus vectors (NYVAC and ALVAC) expressing the same HIV-1 antigens from clade C, Env gp140 as a trimeric cell-released protein and a Gag-Pol-Nef polyprotein as Gag-induced virus-like particles (VLPs) (referred to as NYVAC-C and ALVAC-C). The immunization protocol consisted of two doses of the corresponding poxvirus vector plus two doses of a combination of the poxvirus vector and a purified HIV-1 gp120 protein from clade C. This immunogenicity profile was also compared to that elicited by vaccine regimens consisting of two doses of the ALVAC vector expressing HIV-1 antigens from clades B/E (ALVAC-vCP1521) plus two doses of a combination of ALVAC-vCP1521 and HIV-1 gp120 protein from clades B/E (similar to the RV144 trial regimen) or clade C. The results showed that immunization of macaques with NYVAC-C stimulated at different times more potent HIV-1-specific CD4(+) T-cell responses and induced a trend toward higher-magnitude HIV-1-specific CD8(+) T-cell immune responses than did ALVAC-C. Furthermore, NYVAC-C induced a trend toward higher levels of binding IgG antibodies against clade C HIV-1 gp140, gp120, or murine leukemia virus (MuLV) gp70-scaffolded V1/V2 and toward best cross-clade-binding IgG responses against HIV-1 gp140 from clades A, B, and group M consensus, than did ALVAC-C. Of the linear binding IgG responses, most were directed against the V3 loop in all immunization groups. Additionally, NYVAC-C and ALVAC-C also induced similar levels of HIV-1-neutralizing antibodies and antibody-dependent cellular cytotoxicity (ADCC) responses. Interestingly, binding IgA antibody levels against HIV-1 gp120 or MuLV gp70-scaffolded V1/V2 were absent or very low in all immunization groups. Overall, these results provide a comprehensive survey of the immunogenicity of NYVAC versus ALVAC expressing HIV-1 antigens in nonhuman primates and indicate that NYVAC may represent an alternative candidate to ALVAC in the development of a future HIV-1 vaccine. IMPORTANCE: The finding of a safe and effective HIV/AIDS vaccine immunogen is one of the main research priorities. Here, we generated two poxvirus-based HIV vaccine candidates (NYVAC and ALVAC vectors) expressing the same clade C HIV-1 antigens in separate vectors, and we analyzed in nonhuman primates their immunogenicity profiles. The results showed that immunization with NYVAC-C induced a trend toward higher HIV-1-specific cellular and humoral immune responses than did ALVAC-C, indicating that this new NYVAC vector could be a novel optimized HIV/AIDS vaccine candidate for human clinical trials.
Resumo:
The current understanding of hormonal regulation of matrix metalloproteinase-26 (MMP-26) in the primate endometrium is incomplete. The goal of this work was to clarify estrogen and progesterone regulation of MMP-26 in the endometrium of ovariectomized, hormone-treated rhesus macaques.Ovariectomized rhesus macaques (n 66) were treated with estradiol (E-2), E-2 plus progesterone, E-2 followed by progesterone alone or no hormone. Endometrium was collected from the hormone-treated animals during the early, mid- and late proliferative and secretory phases of the artificial menstrual cycle. MMP-26 expression was quantified by real-time PCR, and MMP-26 transcript and protein were localized by in situ hybridization and immunohistochemistry and correlated with estrogen receptor 1 and progesterone receptor (PGR).MMP-26 was localized to glandular epithelium and was undetectable in the endometrial stroma and vasculature. MMP-26 transcript levels were minimal in the hormone-deprived macaques and treatment with E-2 alone did not affect MMP-26 levels. Treatment with progesterone both in the presence and absence of E-2 stimulated MMP-26 expression in the early and mid-secretory phases (P 0.001). MMP-26 expression preceded decidualization of endometrial stroma. MMP-26 levels then declined to baseline in the late secretory phase (P 0.01) despite continued E-2 plus progesterone treatment. Loss of detectable MMP-26 expression in the late secretory phase was correlated with late secretory phase loss of glandular epithelial PGR.Endometrial MMP-26 expression is dependent on the presence of progesterone in the early secretory phase and then gradually becomes refractory to progesterone stimulation in the late secretory phase. In the macaque, MMP-26 is a marker of the pre-decidual, secretory endometrium. During the second half of the late secretory phase, and during decidualization, MMP-26 loses its response to progesterone concurrent with the loss of epithelial PGR. The decline in MMP-26 levels between the mid- and late secretory phases may play a role in the receptive window for embryo implantation.
Resumo:
It is generally thought that an effective vaccine to prevent HIV-1 infection should elicit both strong neutralizing antibody and cytotoxic T lymphocyte responses. We recently demonstrated that potent, boostable, long-lived HIV-1 envelope (Env)-specific cytotoxic T lymphocyte responses can be elicited in rhesus monkeys using plasmid-encoded HIV-1 env DNA as the immunogen. In the present study, we show that the addition of HIV-1 Env protein to this regimen as a boosting immunogen generates a high titer neutralizing antibody response in this nonhuman primate species. Moreover, we demonstrate in a pilot study that immunization with HIV-1 env DNA (multiple doses) followed by a final immunization with HIV-1 env DNA plus HIV-1 Env protein (env gene from HXBc2 clone of HIV IIIB; Env protein from parental HIV IIIB) completely protects monkeys from infection after i.v. challenge with a chimeric virus expressing HIV-1 env (HXBc2) on a simian immmunodeficiency virusmac backbone (SHIV-HXBc2). The potent immunity and protection seen in these pilot experiments suggest that a DNA prime/DNA plus protein boost regimen warrants active investigation as a vaccine strategy to prevent HIV-1 infection.
Resumo:
We examined the effect of two rhesus papillomavirus 1 (RhPV) oncogenes on cytokine-induced signal transduction pathways leading to the possible activation of Ras protein (p21ras) and phosphatidylinositol kinase. p21ras in both the activated (GTP-bound) and inactivated (GDP-bound) states were quantitated. NIH 3T3 cell lines expressing the RhPV 1 E5 gene or epidermal growth factor receptor cDNA had about a sixfold higher ratio of p21ras-bound GTP to p21ras-bound GDP as compared with parental NIH 3T3 cells or a cell line expressing the RhPV 1 E7 gene under normal culture conditions, yet expressed similar levels of p21ras. Quiescent cells had dramatically reduced levels of activated p21ras, except those containing RhPV 1 E7. Levels were restored by stimulation with epidermal growth factor or platelet-derived growth factor. Both epidermal growth factor and platelet-derived growth factor receptor of RhPV 1 E5- and E7-containing cells responded to cytokine stimulation. Endogenous phosphatidylinositol-3′-kinase was up-regulated in NIH 3T3 cells transformed with the E5 genes of RhPV 1 and bovine papillomavirus 1. These results suggest that E5 genes of papillomaviruses play a major role in the regulation of transduction pathways.
Resumo:
In laboratory rodents, caloric restriction (CR) retards several age-dependent physiological and biochemical changes in skeletal muscle, including increased steady-state levels of oxidative damage to lipids, DNA, and proteins. We have previously used high-density oligonucleotide arrays to show that CR can prevent or delay most of the major age-related transcriptional alterations in the gastrocnemius muscle of C57BL/6 mice. Here we report the effects of aging and adult-onset CR on the gene expression profile of 7,070 genes in the vastus lateralis muscle from rhesus monkeys. Gene expression analysis of aged rhesus monkeys (mean age of 26 years) was compared with that of young animals (mean age of 8 years). Aging resulted in a selective up-regulation of transcripts involved in inflammation and oxidative stress, and a down-regulation of genes involved in mitochondrial electron transport and oxidative phosphorylation. Middle-aged monkeys (mean age of 20 years) subjected to CR since early adulthood (mean age of 11 years) were studied to determine the gene expression profile induced by CR. CR resulted in an up-regulation of cytoskeletal protein-encoding genes, and also a decrease in the expression of genes involved in mitochondrial bioenergetics. Surprisingly, we did not observe any evidence for an inhibitory effect of adult-onset CR on age-related changes in gene expression. These results indicate that the induction of an oxidative stress-induced transcriptional response may be a common feature of aging in skeletal muscle of rodents and primates, but the extent to which CR modifies these responses may be species-specific.
Resumo:
Pancreatic β-cells are highly sensitive to suboptimal or excess nutrients, as occurs in protein-malnutrition and obesity. Taurine (Tau) improves insulin secretion in response to nutrients and depolarizing agents. Here, we assessed the expression and function of Cav and KATP channels in islets from malnourished mice fed on a high-fat diet (HFD) and supplemented with Tau. Weaned mice received a normal (C) or a low-protein diet (R) for 6 weeks. Half of each group were fed a HFD for 8 weeks without (CH, RH) or with 5% Tau since weaning (CHT, RHT). Isolated islets from R mice showed lower insulin release with glucose and depolarizing stimuli. In CH islets, insulin secretion was increased and this was associated with enhanced KATP inhibition and Cav activity. RH islets secreted less insulin at high K(+) concentration and showed enhanced KATP activity. Tau supplementation normalized K(+)-induced secretion and enhanced glucose-induced Ca(2+) influx in RHT islets. R islets presented lower Ca(2+) influx in response to tolbutamide, and higher protein content and activity of the Kir6.2 subunit of the KATP. Tau increased the protein content of the α1.2 subunit of the Cav channels and the SNARE proteins SNAP-25 and Synt-1 in CHT islets, whereas in RHT, Kir6.2 and Synt-1 proteins were increased. In conclusion, impaired islet function in R islets is related to higher content and activity of the KATP channels. Tau treatment enhanced RHT islet secretory capacity by improving the protein expression and inhibition of the KATP channels and enhancing Synt-1 islet content.
Resumo:
This study aimed to identify novel biomarkers for thyroid carcinoma diagnosis and prognosis. We have constructed a human single-chain variable fragment (scFv) antibody library that was selected against tumour thyroid cells using the BRASIL method (biopanning and rapid analysis of selective interactive ligands) and phage display technology. One highly reactive clone, scFv-C1, with specific binding to papillary thyroid tumour proteins was confirmed by ELISA, which was further tested against a tissue microarray that comprised of 229 thyroid tissues, including: 110 carcinomas (38 papillary thyroid carcinomas (PTCs), 42 follicular carcinomas, 30 follicular variants of PTC), 18 normal thyroid tissues, 49 nodular goitres (NG) and 52 follicular adenomas. The scFv-C1 was able to distinguish carcinomas from benign lesions (P=0.0001) and reacted preferentially against T1 and T2 tumour stages (P=0.0108). We have further identified an OTU domain-containing protein 1, DUBA-7 deubiquitinating enzyme as the scFv-binding antigen using two-dimensional polyacrylamide gel electrophoresis and mass spectrometry. The strategy of screening and identifying a cell-surface-binding antibody against thyroid tissues was highly effective and resulted in a useful biomarker that recognises malignancy among thyroid nodules and may help identify lower-risk cases that can benefit from less-aggressive management.
Resumo:
High-throughput screening of physical, genetic and chemical-genetic interactions brings important perspectives in the Systems Biology field, as the analysis of these interactions provides new insights into protein/gene function, cellular metabolic variations and the validation of therapeutic targets and drug design. However, such analysis depends on a pipeline connecting different tools that can automatically integrate data from diverse sources and result in a more comprehensive dataset that can be properly interpreted. We describe here the Integrated Interactome System (IIS), an integrative platform with a web-based interface for the annotation, analysis and visualization of the interaction profiles of proteins/genes, metabolites and drugs of interest. IIS works in four connected modules: (i) Submission module, which receives raw data derived from Sanger sequencing (e.g. two-hybrid system); (ii) Search module, which enables the user to search for the processed reads to be assembled into contigs/singlets, or for lists of proteins/genes, metabolites and drugs of interest, and add them to the project; (iii) Annotation module, which assigns annotations from several databases for the contigs/singlets or lists of proteins/genes, generating tables with automatic annotation that can be manually curated; and (iv) Interactome module, which maps the contigs/singlets or the uploaded lists to entries in our integrated database, building networks that gather novel identified interactions, protein and metabolite expression/concentration levels, subcellular localization and computed topological metrics, GO biological processes and KEGG pathways enrichment. This module generates a XGMML file that can be imported into Cytoscape or be visualized directly on the web. We have developed IIS by the integration of diverse databases following the need of appropriate tools for a systematic analysis of physical, genetic and chemical-genetic interactions. IIS was validated with yeast two-hybrid, proteomics and metabolomics datasets, but it is also extendable to other datasets. IIS is freely available online at: http://www.lge.ibi.unicamp.br/lnbio/IIS/.
Resumo:
Hsp90 is a molecular chaperone essential for cell viability in eukaryotes that is associated with the maturation of proteins involved in important cell functions and implicated in the stabilization of the tumor phenotype of various cancers, making this chaperone a notably interesting therapeutic target. Celastrol is a plant-derived pentacyclic triterpenoid compound with potent antioxidant, anti-inflammatory and anticancer activities; however, celastrol's action mode is still elusive. In this work, we investigated the effect of celastrol on the conformational and functional aspects of Hsp90α. Interestingly, celastrol appeared to target Hsp90α directly as the compound induced the oligomerization of the chaperone via the C-terminal domain as demonstrated by experiments using a deletion mutant. The nature of the oligomers was investigated by biophysical tools demonstrating that a two-fold excess of celastrol induced the formation of a decameric Hsp90α bound throughout the C-terminal domain. When bound, celastrol destabilized the C-terminal domain. Surprisingly, standard chaperone functional investigations demonstrated that neither the in vitro chaperone activity of protecting against aggregation nor the ability to bind a TPR co-chaperone, which binds to the C-terminus of Hsp90α, were affected by celastrol. Celastrol interferes with specific biological functions of Hsp90α. Our results suggest a model in which celastrol binds directly to the C-terminal domain of Hsp90α causing oligomerization. However, the ability to protect against protein aggregation (supported by our results) and to bind to TPR co-chaperones are not affected by celastrol. Therefore celastrol may act primarily by inducing specific oligomerization that affects some, but not all, of the functions of Hsp90α. To the best of our knowledge, this study is the first work to use multiple probes to investigate the effect that celastrol has on the stability and oligomerization of Hsp90α and on the binding of this chaperone to Tom70. This work provides a novel mechanism by which celastrol binds Hsp90α.