942 resultados para Rf Coil


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inverse methodology for the design of biologically loaded radio-frequency (RF) coils for magnetic resonance imaging applications is described. Free space time-harmonic electromagnetic Green's functions and de-emphasized B-1 target fields are used to calculate the current density on the coil cylinder. In theory, with the B-1 field de-emphasized in the middle of the RF transverse plane, the calculated current distribution can generate an internal magnetic field that can reduce the central overemphasis effect caused by field/tissue interactions at high frequencies. The current distribution of a head coil operating at 4 T (170 MHz) is calculated using an inverse methodology with de-emphasized B-1. target fields. An in-house finite-difference time-domain routine is employed to evaluate B-1 field and signal intensity inside a homogenous cylindrical phantom and then a complete human head model. A comparison with a conventional RF birdcage coil is carried out and demonstrates that this method can help in decreasing the normal bright region caused by field/tissue interactions in head images at 170 MHz and higher field strengths.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Turning points for transitions between the electrostatic and electromagnetic discharge modes in low-frequency (∼ 500 kHz) inductively coupled plasmas have been identified and cross-referenced using time-resolved measurements of the plasma optical emission intensities, RF coil current, and ion saturation current collected by a single RF-compensated Langmuir probe. This enables one to monitor the variation of the plasma parameters, power transfer efficiency, which accompany the discharge hysteresis. The excitation conditions for the pure and hybrid modes in the plasma are considered, and the possibility of the TMmnl → TEm'n'l' transitions at higher frequencies are discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Purpose: To obtain cerebral perfusion territories of the left, the right. and the posterior circulation in humans with high signal-to-noise ratio (SNR) and robust delineation. Materials and Methods: Continuous arterial spin labeling (CASL) was implemented using a dedicated radio frequency (RF) coil. positioned over the neck, to label the major cerebral feeding arteries in humans. Selective labeling was achieved by flow-driven adiabatic fast passage and by tilting the longitudinal labeling gradient about the Y-axis by theta = +/- 60 degrees. Results: Mean cerebral blood flow (CBF) values in gray matter (GM) and white matter (WM) were 74 +/- 13 mL center dot 100 g(-1) center dot minute(-1) and 14 +/- 13 mL center dot 100 g(-1) center dot minute(-1), respectively (N = 14). There were no signal differences between left and right hemispheres when theta = 0 degrees (P > 0.19), indicating efficient labeling of both hemispheres. When theta = +60 degrees, the signal in GM on the left hemisphere, 0.07 +/- 0.06%, was 92% lower than on the right hemisphere. 0.85 +/- 0.30% (P < 1 x 10(-9)). while for theta = -60 degrees, the signal in the right hemisphere. 0.16 +/- 0.13%, was 82% lower than on the contralateral side. 0.89 +/- 0.22% (P < 1 x 10(-10)). Similar attenuations were obtained in WM. Conclusion: Clear delineation of the left and right cerebral perfusion territories was obtained, allowing discrimination of the anterior and posterior circulation in each hemisphere.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

In magnetic resonance imaging (MRI), either on human or animal studies, the main requirements for radiofrequency (RF) coils are to produce a homogeneous RF field while used as a transmitter coil and to have the best signal-to-noise ratio (SNR) while used as a receiver. Besides, they need to be easily frequency adjustable and have input impedance matching 50 Omega to several different load conditions. New theoretical and practical concepts are presented here for considerable enhancing of RF coil homogeneity for MRI experiments on small animals. To optimize field homogeneity, we have performed simulations using Blot and Savart law varying the coil`s window angle, achieving the optimum one. However, when the coil`s dimensions are the same order of the wave length and according to transmission line theory, differences in electrical length and effects of mutual inductances between adjacent strip conductors decrease both field homogeneity and SNR. The problematic interactions between strip conductors by means of mutual inductance were eliminated by inserting crossings at half electrical length, avoiding distortion on current density, thus eliminating sources of field inhomogeneity. Experimental results show that measured field maps and simulations are in good agreement. The new coil design, dubbed double-crossed saddle described here have field homogeneity and SNR superior than the linearly driven 8-rung birdcage coil. One of our major findings was that the effects of mutual inductance are more significant than differences in electrical length for this frequency and coil dimensions. In vitro images of a primate Cebus paela brain were acquired, confirming double-crossed saddle superiority. (C) 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 37B: 193-201, 2010

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Radio-frequency ( RF) coils are designed such that they induce homogeneous magnetic fields within some region of interest within a magnetic resonance imaging ( MRI) scanner. Loading the scanner with a patient disrupts the homogeneity of these fields and can lead to a considerable degradation of the quality of the acquired image. In this paper, an inverse method is presented for designing RF coils, in which the presence of a load ( patient) within the MRI scanner is accounted for in the model. To approximate the finite length of the coil, a Fourier series expansion is considered for the coil current density and for the induced fields. Regularization is used to solve this ill-conditioned inverse problem for the unknown Fourier coefficients. That is, the error between the induced and homogeneous target fields is minimized along with an additional constraint, chosen in this paper to represent the curvature of the coil windings. Smooth winding patterns are obtained for both unloaded and loaded coils. RF fields with a high level of homogeneity are obtained in the unloaded case and a limit to the level of homogeneity attainable is observed in the loaded case.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Magnetic field inhomogeneity results in image artifacts including signal loss, image blurring and distortions, leading to decreased diagnostic accuracy. Conventional multi-coil (MC) shimming method employs both RF coils and shimming coils, whose mutual interference induces a tradeoff between RF signal-to-noise (SNR) ratio and shimming performance. To address this issue, RF coils were integrated with direct-current (DC) shim coils to shim field inhomogeneity while concurrently emitting and receiving RF signal without being blocked by the shim coils. The currents applied to the new coils, termed iPRES (integrated parallel reception, excitation and shimming), were optimized in the numerical simulation to improve the shimming performance. The objectives of this work is to offer a guideline for designing the optimal iPRES coil arrays to shim the abdomen.

In this thesis work, the main field () inhomogeneity was evaluated by root mean square error (RMSE). To investigate the shimming abilities of iPRES coil arrays, a set of the human abdomen MRI data was collected for the numerical simulations. Thereafter, different simplified iPRES(N) coil arrays were numerically modeled, including a 1-channel iPRES coil and 8-channel iPRES coil arrays. For 8-channel iPRES coil arrays, each RF coil was split into smaller DC loops in the x, y and z direction to provide extra shimming freedom. Additionally, the number of DC loops in a RF coil was increased from 1 to 5 to find the optimal divisions in z direction. Furthermore, switches were numerically implemented into iPRES coils to reduce the number of power supplies while still providing similar shimming performance with equivalent iPRES coil arrays.

The optimizations demonstrate that the shimming ability of an iPRES coil array increases with number of DC loops per RF coil. Furthermore, the z direction divisions tend to be more effective in reducing field inhomogeneity than the x and y divisions. Moreover, the shimming performance of an iPRES coil array gradually reach to a saturation level when the number of DC loops per RF coil is large enough. Finally, when switches were numerically implemented in the iPRES(4) coil array, the number of power supplies can be reduced from 32 to 8 while keeping the shimming performance similar to iPRES(3) and better than iPRES(1). This thesis work offers a guidance for the designs of iPRES coil arrays.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Deposition of indium tin oxide (ITO) among various transparent conductive materials on flexible organic substrates has been intensively investigated among academics and industrials for a whole new array of imaginative optoelectronic products. One critical challenge coming with the organic materials is their poor thermal endurances, considering that the process currently used to produce industry-standard ITO usually involves relatively high substrate temperature in excess of 200°C and post-annealing. A lower processing temperature is thus demanded, among other desires of high deposition rate, large substrate area, good uniformity, and high quality of the deposited materials. For this purpose, we developed an RF-assisted closed-field dual magnetron sputtering system. The “prototype” system consists of a 3-inch unbalanced dual magnetron operated at a closed-field configuration. An RF coil was fabricated and placed between the two magnetron cathodes to initiate a secondary plasma. The concept is to increase the ionization faction with the RF enhancement and utilize the ion energy instead of thermal energy to facilitate the ITO film growth. The closed-field unbalanced magnetrons create a plasma in the intervening region rather than confine it near the target, thus achieving a large-area processing capability. An RF-compensated Langmuir probe was used to characterize and compare the plasmas in mirrored balanced and closed-field unbalanced magnetron configurations. The spatial distributions of the electron density ne and electron temperature Te were measured. The density profiles reflect the shapes of the plasma. Rather than intensively concentrated to the targets/cathodes in the balanced magnetrons, the plasma is more dispersive in the closed-field mode with a twice higher electron density in the substrate region. The RF assistance significantly enhances ne by one or two orders of magnitude higher. The effect of various other parameters, such as pressure, on the plasma was also studied. The ionization fractions of the sputtered atoms were measured using a gridded energy analyzer (GEA) combined with a quartz crystal microbalance (QCM). The presence of the RF plasma effectively increases the ITO ionization fraction to around 80% in both the balanced and closed-field unbalanced configurations. The ionization fraction also varies with pressure, maximizing at 5-10 mTorr. The study of the ionization not only facilitates understanding the plasma behaviors in the RF-assisted magnetron sputtering, but also provides a criterion for optimizing the film deposition process. ITO films were deposited on both glass and plastic (PET) substrates in the 3-inch RF-assisted closed-field magnetrons. The electrical resistivity and optical transmission transparency of the ITO films were measured. Appropriate RF assistance was shown to dramatically reduce the electrical resistivity. An ITO film with a resistivity of 1.2×10-3 Ω-cm and a visible light transmittance of 91% was obtained with a 225 W RF enhancement, while the substrate temperature was monitored as below 110°C. X-ray photoelectron spectroscopy (XPS) was employed to confirm the ITO film stoichiometry. The surface morphology of the ITO films and its effect on the film properties were studied using atomic force microscopy (AFM). The prototype of RF-assisted closed-field magnetron was further extended to a larger rectangular shaped dual magnetron in a flat panel display manufacturing system. Similar improvement of the ITO film conductivities by the auxiliary RF was observed on the large-area PET substrates. Meanwhile, significant deposition rates of 25-42 nm/min were achieved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The results of comprehensive experimental studies of the operation, stability, and plasma parameters of the low-frequency (0.46 MHz) inductively coupled plasmas sustained by the internal oscillating rf current are reported. The rf plasma is generated by using a custom-designed configuration of the internal rf coil that comprises two perpendicular sets of eight currents in each direction. Various diagnostic tools, such as magnetic probes, optical emission spectroscopy, and an rf-compensated Langmuir probe were used to investigate the electromagnetic, optical, and global properties of the argon plasma in wide ranges of the applied rf power and gas feedstock pressure. It is found that the uniformity of the electromagnetic field inside the plasma reactor is improved as compared to the conventional sources of inductively coupled plasmas with the external flat coil configuration. A reasonable agreement between the experimental data and computed electromagnetic field topography inside the chamber is reported. The Langmuir probe measurements reveal that the spatial profiles of the electron density, the effective electron temperature, plasma potential, and electron energy distribution/probability functions feature a high degree of the radial and axial uniformity and a weak azimuthal dependence, which is consistent with the earlier theoretical predictions. As the input rf power increases, the azimuthal dependence of the global plasma parameters vanishes. The obtained results demonstrate that by introducing the internal oscillated rf currents one can noticeably improve the uniformity of electromagnetic field topography, rf power deposition, and the plasma density in the reactor.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effects of recent advances in magnetic resonance imaging (MRI) radiofrequency (RF) coil and parallel imaging technology on brain volume measurement consistency. MATERIALS AND METHODS: In all, 103 whole-brain MRI volumes were acquired at a clinical 3T MRI, equipped with a 12- and 32-channel head coil, using the T1-weighted protocol as employed in the Alzheimer's Disease Neuroimaging Initiative study with parallel imaging accelerations ranging from 1 to 5. An experienced reader performed qualitative ratings of the images. For quantitative analysis, differences in composite width (CW, a measure of image similarity) and boundary shift integral (BSI, a measure of whole-brain atrophy) were calculated. RESULTS: Intra- and intersession comparisons of CW and BSI measures from scans with equal acceleration demonstrated excellent scan-rescan accuracy, even at the highest acceleration applied. Pairs-of-scans acquired with different accelerations exhibited poor scan-rescan consistency only when differences in the acceleration factor were maximized. A change in the coil hardware between compared scans was found to bias the BSI measure. CONCLUSION: The most important findings are that the accelerated acquisitions appear to be compatible with the assessment of high-quality quantitative information and that for highest scan-rescan accuracy in serial scans the acquisition protocol should be kept as consistent as possible over time. J. Magn. Reson. Imaging 2012;36:1234-1240. ©2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Magnetic resonance imaging (MRI) is today precluded to patients bearing active implantable medical devices AIMDs). The great advantages related to this diagnostic modality, together with the increasing number of people benefiting from implantable devices, in particular pacemakers(PM)and carioverter/defibrillators (ICD), is prompting the scientific community the study the possibility to extend MRI also to implanted patients. The MRI induced specific absorption rate (SAR) and the consequent heating of biological tissues is one of the major concerns that makes patients bearing metallic structures contraindicated for MRI scans. To date, both in-vivo and in-vitro studies have demonstrated the potentially dangerous temperature increase caused by the radiofrequency (RF) field generated during MRI procedures in the tissues surrounding thin metallic implants. On the other side, the technical evolution of MRI scanners and of AIMDs together with published data on the lack of adverse events have reopened the interest in this field and suggest that, under given conditions, MRI can be safely performed also in implanted patients. With a better understanding of the hazards of performing MRI scans on implanted patients as well as the development of MRI safe devices, we may soon enter an era where the ability of this imaging modality may be more widely used to assist in the appropriate diagnosis of patients with devices. In this study both experimental measures and numerical analysis were performed. Aim of the study is to systematically investigate the effects of the MRI RF filed on implantable devices and to identify the elements that play a major role in the induced heating. Furthermore, we aimed at developing a realistic numerical model able to simulate the interactions between an RF coil for MRI and biological tissues implanted with a PM, and to predict the induced SAR as a function of the particular path of the PM lead. The methods developed and validated during the PhD program led to the design of an experimental framework for the accurate measure of PM lead heating induced by MRI systems. In addition, numerical models based on Finite-Differences Time-Domain (FDTD) simulations were validated to obtain a general tool for investigating the large number of parameters and factors involved in this complex phenomenon. The results obtained demonstrated that the MRI induced heating on metallic implants is a real risk that represents a contraindication in extending MRI scans also to patient bearing a PM, an ICD, or other thin metallic objects. On the other side, both experimental data and numerical results show that, under particular conditions, MRI procedures might be consider reasonably safe also for an implanted patient. The complexity and the large number of variables involved, make difficult to define a unique set of such conditions: when the benefits of a MRI investigation cannot be obtained using other imaging techniques, the possibility to perform the scan should not be immediately excluded, but some considerations are always needed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An interleaved, dual resonance, volume localization technique for $\sp1$H/$\sp{31}$P magnetic resonance spectroscopy has been designed, implemented on a 2 T imager/spectrometer, and verified with phantom studies.^ Localization techniques, including several single voxel techniques and spectroscopic imaging, were implemented, and studies were performed to compare the efficiency of each sequence of $\sp1$H/$\sp{31}$P spectral acquisitions. The sequence chosen was a hybrid of the stimulated echo single voxel technique and the spectroscopic imaging technique.^ Water suppression during the $\sp1$H spectral acquisitions was accomplished by the use of three narrow bandwidth RF saturation pulses in combination with three spoiler gradients. The spoiler gradient amplitudes were selected on the basis of a numerical solution of the Bloch equations. A post-acquisition water suppression algorithm was used to minimize any residual water signal.^ For interleaved $\sp1$H/$\sp{31}$P acquisitions, a dual resonance RF coil was constructed and interfaced to the existing RF detection system via a custom-designed dual resonance transcoupler and switching system. Programmable attenuators were incorporated to allow for changes in receiver and transmitter attenuation "on the fly".^ To provide the rapidly switched gradient fields required for the $\sp1$H/$\sp{31}$P acquisitions, an actively screened gradient coil system was designed and implemented. With this system, gradient field rise times on the order of 100 $\mu$s were obtained. These rapid switching times were necessary for minimizing intrasequence delays and for improving localization quality and water suppression efficiency.^ The interleaved $\sp1$H/$\sp{31}$P volume localization technique was tested using a two-compartment phantom. Analysis of the data showed that the spectral contamination was less than three percent. One-to-one spatial correspondence of the $\sp1$H and $\sp{31}$P spectra was verified and allowed for direct correlation of the spectral data with a standard magnetic resonance image. ^

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The precise evaluation of electromagnetic field (EMF) distributions inside biological samples is becoming an increasingly important design requirement for high field MRI systems. In evaluating the induced fields caused by magnetic field gradients and RF transmitter coils, a multilayered dielectric spherical head model is proposed to provide a better understanding of electromagnetic interactions when compared to a traditional homogeneous head phantom. This paper presents Debye potential (DP) and Dyadic Green's function (DGF)-based solutions of the EMFs inside a head-sized, stratified sphere with similar radial conductivity and permittivity profiles as a human head. The DP approach is formulated for the symmetric case in which the source is a circular loop carrying a harmonic-formed current over a wide frequency range. The DGF method is developed for generic cases in which the source may be any kind of RF coil whose current distribution can be evaluated using the method of moments. The calculated EMFs can then be used to deduce MRI imaging parameters. The proposed methods, while not representing the full complexity of a head model, offer advantages in rapid prototyping as the computation times are much lower than a full finite difference time domain calculation using a complex head model. Test examples demonstrate the capability of the proposed models/methods. It is anticipated that this model will be of particular value for high field MRI applications, especially the rapid evaluation of RF resonator (surface and volume coils) and high performance gradient set designs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper presents a finite-difference time-domain (FDTD) simulator for electromagnetic analysis and design applications in MRI. It is intended to be a complete FDTD model of an MRI system including all RF and low-frequency field generating units and electrical models of the patient. The pro-ram has been constructed in an object-oriented framework. The design procedure is detailed and the numerical solver has been verified against analytical solutions for simple cases and also applied to various field calculation problems. In particular, the simulator is demonstrated for inverse RF coil design, optimized source profile generation, and parallel imaging in high-frequency situations. The examples show new developments enabled by the simulator and demonstrate that the proposed FDTD framework can be used to analyze large-scale computational electromagnetic problems in modern MRI engineering. (C) 2004 Elsevier Inc. All rights reserved.