971 resultados para Reynolds-averaged Navier-Stokes (RANS)
Resumo:
The issue of growth rate reduction of high speed mixing layer with convective Mach number is examined for similar and dissimilar gases using Reynolds averaged Navier-Stokes (RANS) methodology with k- turbulence model. It is observed that the growth rate predicted using RANS simulations closely matches with that predicted using model free simulations. Velocity profiles do not depend on the modelled value of Pr-t and Sc-t; while the temperature and species mass fraction distributions depend heavily on them. Although basic k- turbulence model could not capture the reduced growth rate for the mixing layer formed between similar gases, it predicts very well the reduced growth rate for the mixing layer for the dissimilar gases. It appears that density ratio changes caused by temperature changes for the dissimilar gases have profound effect on the growth rate reduction.
Resumo:
Finding an appropriate turbulence model for a given flow case usually calls for extensive experimentation with both models and numerical solution methods. This work presents the design and implementation of a flexible, programmable software framework for assisting with numerical experiments in computational turbulence. The framework targets Reynolds-averaged Navier-Stokes models, discretized by finite element methods. The novel implementation makes use of Python and the FEniCS package, the combination of which leads to compact and reusable code, where model- and solver-specific code resemble closely the mathematical formulation of equations and algorithms. The presented ideas and programming techniques are also applicable to other fields that involve systems of nonlinear partial differential equations. We demonstrate the framework in two applications and investigate the impact of various linearizations on the convergence properties of nonlinear solvers for a Reynolds-averaged Navier-Stokes model. © 2011 Elsevier Ltd.
Resumo:
Reynolds Averaged Navier Stokes (RANS) equations are solved using third order upwind biased Roe's scheme for the inviscid fluxes and second order central difference scheme for the viscous fluxes. The Baldwin & Lomax turbulence model is employed for Reynolds stresses. The governing equations are solved using finite-volume implicit scheme in body fitted curvilinear coordinate O-grid system. Computations axe reported for a flat plate apart from RAE 2822 and NACA 0012 airfoils. Results for the flat plate at M = 0.3, R-c = 4.0 x 10(6) compare favourably with the analytical solution. Results for the two airfoils are compared with experiment. There is a good agreement in C-p distribution between experiment and computation for both the airfoils. Comparison of C-f distribution with experiment for RAE 2822 airfoil is reasonable.
Resumo:
Turbomachinery flows are inherently unsteady. Until now during the design process, unsteadiness has been neglected, with resort merely to steady numerical simulations. Despite the assumption involved, the results obtained with steady simulations have been used with success. One of the questions arising in recent years is can unsteady simulations be used to improve the design of turbomachines? In this work the numerical simulation of a multi-stage axial compressor is carried out. Comparison of Reynolds averaged Navier-Stokes (RANS) and unsteady Reynolds averaged Navier-Stokes (URANS) calculation shows that the unsteadiness affects pressure losses and the prediction of stall limit. The unsteady inflow due to the wake passing mainly modifies the losses and whirl angle near the endwalls. The computational cost of the fully unsteady compared with a steady simulation is about four times in terms of mesh dimension and two orders of magnitude as number of iterations. A mixed RANS-URANS solution has been proposed to give the designer the possibility to simulate an unsteady stage embedded in a steady-state simulation. This method has been applied to the simulation of a four-stage axial compressor rig. The mixed RANS-URANS approach has been developed using sliding and mixing planes as interface conditions. The rotor-stator interaction has been captured physically while reducing the computational time and mesh size.
Resumo:
Uma simulação numérica que leva em conta os efeitos de estratificação e mistura escalar (como a temperatura, salinidade ou substância solúvel em água) é necessária para estudar e prever os impactos ambientais que um reservatório de usina hidrelétrica pode produzir. Este trabalho sugere uma metodologia para o estudo de escoamentos ambientais, principalmente aqueles em que o conhecimento da interação entre a estratificação e mistura pode dar noções importantes dos fenômenos que ocorrem. Por esta razão, ferramentas de simulação numérica 3D de escoamento ambiental são desenvolvidas. Um gerador de malha de tetraedros do reservatório e o modelo de turbulência algébrico baseado no número de Richardson são as principais ferramentas desenvolvidas. A principal dificuldade na geração de uma malha de tetraedros de um reservatório é a distribuição não uniforme dos pontos relacionada com a relação desproporcional entre as escalas horizontais e verticais do reservatório. Neste tipo de distribuição de pontos, o algoritmo convencional de geração de malha de tetraedros pode tornar-se instável. Por esta razão, um gerador de malha não estruturada de tetraedros é desenvolvido e a metodologia utilizada para obter elementos conformes é descrita. A geração de malha superficial de triângulos utilizando a triangulação Delaunay e a construção do tetraedros a partir da malha triangular são os principais passos para o gerador de malha. A simulação hidrodinâmica com o modelo de turbulência fornece uma ferramenta útil e computacionalmente viável para fins de engenharia. Além disso, o modelo de turbulência baseado no número de Richardson leva em conta os efeitos da interação entre turbulência e estratificação. O modelo algébrico é o mais simples entre os diversos modelos de turbulência. Mas, fornece resultados realistas com o ajuste de uma pequena quantidade de parâmetros. São incorporados os modelos de viscosidade/difusividade turbulenta para escoamento estratificado. Na aproximação das equações médias de Reynolds e transporte de escalar é utilizando o Método dos Elementos Finitos. Os termos convectivos são aproximados utilizando o método semi-Lagrangeano, e a aproximação espacial é baseada no método de Galerkin. Os resultados computacionais são comparados com os resultados disponíveis na literatura. E, finalmente, a simulação de escoamento em um braço de reservatório é apresentada.
Resumo:
The influences of differential diffusion rates of heat and mass on the transport of the variances of Favre fluctuations of reaction progress variable and non-dimensional temperature have been studied using three-dimensional simplified chemistry based Direct Numerical Simulation (DNS) data of statistically planar turbulent premixed flames with global Lewis number ranging from Le = 0.34 to 1.2. The Lewis number effects on the statistical behaviours of the various terms of the transport equations of variances of Favre fluctuations of reaction progress variable and non-dimensional temperature have been analysed in the context of Reynolds Averaged Navier Stokes (RANS) simulations. It has been found that the turbulent fluxes of the progress variable and temperature variances exhibit counter-gradient transport for the flames with Lewis number significantly smaller than unity whereas the extent of this counter-gradient transport is found to decrease with increasing Lewis number. The Lewis number is also shown to have significant influences on the magnitudes of the chemical reaction and scalar dissipation rate contributions to the scalar variance transport. The modelling of the unclosed terms in the scalar variance equations for the non-unity Lewis number flames have been discussed in detail. The performances of the existing models for the unclosed terms are assessed based on a-priori analysis of DNS data. Based on the present analysis, new models for the unclosed terms of the active scalar variance transport equations are proposed, whenever necessary, which are shown to satisfactorily capture the behaviours of unclosed terms for all the flames considered in this study. © 2010 Springer Science+Business Media B.V.
Resumo:
A workshop on the computational fluid dynamics (CFD) prediction of shock boundary-layer interactions (SBLIs) was held at the 48th AIAA Aerospace Sciences Meeting. As part of the workshop, numerous CFD analysts submitted solutions to four experimentally measured SBLIs. This paper describes the assessment of the CFD predictions. The assessment includes an uncertainty analysis of the experimental data, the definition of an error metric, and the application of that metric to the CFD solutions. The CFD solutions provided very similar levels of error and, in general, it was difficult to discern clear trends in the data. For the Reynolds-averaged Navier-Stokes (RANS) methods, the choice of turbulence model appeared to be the largest factor in solution accuracy. Scale-resolving methods, such as large-eddy simulation (LES), hybrid RANS/LES, and direct numerical simulation, produced error levels similar to RANS methods but provided superior predictions of normal stresses. Copyright © 2012 by Daniella E. Raveh and Michael Iovnovich.
Resumo:
Modeling of the joint probability density function of the mixture fraction and progress variable with a given covariance value is studied. This modeling is validated using experimental and direct numerical simulation (DNS) data. A very good agreement with experimental data of turbulent stratified flames and DNS data of a lifted hydrogen jet flame is obtained. The effect of using this joint pdf modeling to calculate the mean reaction rate with a flamelet closure in Reynolds averaged Navier-Stokes (RANS) calculation of stratified flames is studied. The covariance effect is observed to be large within the flame brush. The results obtained from RANS calculations using this modeling for stratified jet- and rod-stabilized V-flames are discussed and compared to the measurements as a posteriori validation for the joint probability density function model with the flamelet closure. The agreement between the computed and measured values of flame and turbulence quantities is found to be good. © 2012 Copyright Taylor and Francis Group, LLC.
Resumo:
Numerical methods based on the Reynolds Averaged Navier-Stokes (RANS) and Large Eddy Simulation (LES) equations are applied to the thermal prediction of flows representative of those found in and around electronics systems and components. Low Reynolds number flows through a heated ribbed channel, around a heated cube and within a complex electronics system case are investigated using linear and nonlinear LES models, hybrid RANS-LES and RANS-Numerical-LES (RANS-NLES) methods. Flow and heat transfer predictions using these techniques are in good agreement with each other and experimental data for a range of grid resolutions. Using second order central differences, the RANS-NLES method performs well for all simulations. © 2011 Elsevier Inc.
Resumo:
Hybrid methods based on the Reynolds Averaged Navier Stokes (RANS) equations and the Large Eddy Simulation (LES) formulation are investigated to try and improve the accuracy of heat transfer and surface temperature predictions for electronics systems and components. Two relatively low Reynolds number flows are studied using hybrid RANS-LES, RANS-Implicit-LES (RANS-ILES) and non-linear LES models. Predictions using these methods are in good agreement with each other, even using different grid resolutions. © 2008 IEEE.
Resumo:
This study develops a single-stream jet noise prediction model for a family of chevron nozzles. An original equation is proposed for the fourth-order space-time cross-correlations. They are expressed in flow parameters such as streamwise circulation and turbulent kinetic energy. The cross-correlations based on a Reynolds Averaged Navier-Stokes (RANS) flowfield showed a good agreement with those based on a Large Eddy Simulation (LES) flowfield. This proves that the proposed equation describes the cross-correlations accurately. With this novel source description, there is an excellent agreement between our model's far-field noise predictions and measurements1 for a wide range of frequencies and radiation angles. Our model captures the spectral shape, amplitude and peak frequency very well. This establishes that our model holds good for a family of chevron nozzles. As our model provides quick and accurate predictions, a parametric study was performed to understand the effects of a chevron nozzle geometry on jet noise and thrust loss. Chevron penetration is the underpinning factor for jet noise reduction. The reduction of jet noise per unit thrust loss decreases linearly with chevron penetration. The number of chevrons also has a considerable effect on jet noise.
Resumo:
Nonlinear interaction between surface waves and a submerged horizontal plate is investigated in the absorbed numerical wave flume developed based on the volume of fluid (VOF) method. The governing equations of the numerical model are the continuity equation and the Reynolds-Averaged Navier-Stokes (RANS) equations with the k-epsilon turbulence equations. Incident waves are generated by an absorbing wave-maker that eliminates the waves reflected from structures. Results are obtained for a range of parameters, with consideration of the condition under which the reflection coefficient becomes maximal and the transmission coefficient minimal. Wave breaking over the plate, vortex shedding downwave, and pulsating flow below the plate are observed. Time-averaged hydrodynamic force reveals a negative drift force. All these characteristics provide a reference for construction of submerged plate breakwaters.
Resumo:
Sound waves are propagating pressure fluctuations and are typically several orders of magnitude smaller than the pressure variations in the flow field that account for flow acceleration. On the other hand, these fluctuations travel at the speed of sound in the medium, not as a transported fluid quantity. Due to the above two properties, the Reynolds averaged Navier-Stokes (RANS) equations do not resolve the acoustic fluctuations. Direct numerical simulation of turbulent flow is still a prohibitively expensive tool to perform noise analysis. This paper proposes the acousticcorrectionmethod, an alternative and affordable tool based on a modified defect correction concept, which leads to an efficient algorithm for computational aeroacoustics and noise analysis.
Resumo:
Most Wave Energy Converters (WECs) being developed are fundamentally different from known marine structures. Limited experience is a fundamental challenge for the design, especially issues concerning load assumptions and power estimates. Reynolds-Averaged Navier-Stokes (RANS) CFD methods are being used successfully in many areas of marine engineering. They have been shown to accurately simulate many hydrodynamic effects and are a helpful tool for investigating complex flows. The major drawback is the significant computational power required and the associated overhead with pre and post-processing. This paper presents the challenges and advantages in the application of RANS CFD methods in the design process of a wave energy converter and compares the time, labour and ultimately financial requirements for obtaining practical results.