573 resultados para Reversibly Polymerizing Solutes


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This investigation re-examines theoretical aspects of the allowance for effects of thermodynamic non-ideality on the characterization of protein self-association by frontal exclusion chromatography, and thereby provides methods of analysis with greater thermodynamic rigor than those used previously. Their application is illustrated by reappraisal of published exclusion chromatography data for hemoglobin on the controlled-pore-glass matrix CPG-120. The equilibrium constant of 100/M that is obtained for dimerization of the (02 species by this means is also deduced from re-examination of published studies of concentrated hemoglobin solutions by osmotic pressure and sedimentation equilibrium methods. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This review summarizes the development of exclusion chromatography, also termed gel filtration, molecular-sieve chromatography and gel permeation chromatography, for the quantitative characterization of solutes and solute interactions. As well as affording a means of determining molecular mass and molecular mass distribution, the technique offers a convenient way of characterizing solute selfassociation and solute-ligand interactions in terms of reaction stoichiometry and equilibrium constant. The availability of molecular-sieve media with different selective porosities ensures that very little restriction is imposed on the size of solute amenable to study. Furthermore, access to a diverse array of assay procedures for monitoring the column eluate endows analytical exclusion chromatography with far greater flexibility than other techniques from the viewpoint of solute concentration range that can be examined. In addition to its widely recognized prowess as a means of solute separation and purification, exclusion chromatography thus also possesses considerable potential for investigating the functional roles of the purified solutes. (C) 2003 Elsevier Science B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A-- water bath at 74ºC for 9 h; B-- water bath at 74ºC for 8 h and temperature increased to 100ºC for 1 h; C-- water bath at 74ºC for 2 h and temperature increased to 100ºC for 1 h;; and D-- water bath at 120ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 sec was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Proteins are designed to function in environments crowded by cosolutes, but most studies of protein equilibria are conducted in dilute solution. While there is no doubt that crowding changes protein equilibria, interpretations of the changes remain controversial. This review combines experimental observations on the effect of small uncharged cosolutes (mostly sugars) on protein stability with a discussion of the thermodynamics of cosolute-induced nonideality and critical assessments of the most commonly applied interpretations. Despite the controversy surrounding the most appropriate manner for interpreting these effects of thermodynamic nonideality arising from the presence of small cosolutes, experimental advantage may still be taken of the ability of the cosolute effect to promote not only protein stabilization but also protein self-association and complex formation between dissimilar reactants. This phenomenon clearly has potential ramifications in the cell, where the crowded environment could well induce the same effects.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to determine the pharmacokinetics of [C-14]diclofenac, [C-14]salicylate and [H-3]clonidine using a single pass rat head perfusion preparation. The head was perfused with 3-[N-morpholino] propane-sulfonic acid-buffered Ringer's solution. Tc-99m-red blood cells and a drug were injected in a bolus into the internal carotid artery and collected from the posterior facial vein over 28 min. A two-barrier stochastic organ model was used to estimate the statistical moments of the solutes. Plasma, interstitial and cellular distribution volumes for the solutes ranged from 1.0 mL (diclofenac) to 1.6 mL (salicylate), 2.0 mL (diclofenac) to 4.2 mL (water) and 3.9 mL (salicylate) to 20.9 mL (diclofenac), respectively. A comparison of these volumes to water indicated some exclusion of the drugs from the interstitial space and salicylate from the cellular space. Permeability-surface area (PS) products calculated from plasma to interstitial fluid permeation clearances (CLPI) (range 0.02-0.40 mL s(-1)) and fractions of solute unbound in the perfusate were in the order: diclofenac>salicylate >clonidine>sucrose (from 41.8 to 0.10 mL s(-1)). The slow efflux of diclofenac, compared with clonidine and salicylate, may be related to its low average unbound fraction in the cells. This work accounts for the tail of disposition curves in describing pharmacokinetics in the head.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to establish the relationship between solute lipophilicity and skin penetration (including flux and concentration behavior), we examined the in vitro penetration and membrane concentration of a series of homologous alcohols (C2-C10) applied topically in aqueous solutions to human epidermal, full-thickness, and dermal membranes. The partitioning/distribution of each alcohol between the donor solution, stratum corneum, viable epidermis, dermis, and receptor phase compartments was determined during the penetration process and separately to isolated samples of each tissue type. Maximum flux and permeability coefficients are compared for each membrane and estimates of alcohol diffusivity are made based on flux/concentration data and also the related tissue resistance (the reciprocal of permeability coefficient) for each membrane type. The permeability coefficient increased with increasing lipophilicity to alcohol C8 (octanol) with no further increase for C10 (decanol). Log vehicle:stratum corneum partition coefficients were related to logP , and the concentration of alcohols in each of the tissue layers appeared to increase with lipophilicity. No difference was measured in the diffusivity of smaller more polar alcohols in the three membranes; however, the larger more lipophilic solutes showed slower diffusivity values. The study showed that the dermis may be a much more lipophilic environment than originally believed and that distribution of smaller nonionized solutes into local tissues below a site of topical application may be estimated based on knowledge of their lipophilicity alone.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D. degree in Biochemistry

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertation presented to obtain the Ph.D degree in Engineering Sciences and Technology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The ultrastructure of the membrane attack complex (MAC) of complement had been described as representing a hollow cylinder of defined dimensions that is composed of the proteins C5b, C6, C7, C8, and C9. After the characteristic cylindrical structure was identified as polymerized C9 [poly(C9)], the question arose as to the ultrastructural identity and topology of the C9-polymerizing complex C5b-8. An electron microscopic analysis of isolated MAC revealed an asymmetry of individual complexes with respect to their length. Whereas the length of one boundary (+/- SEM) was always 16 +/- 1 nm, the length of the other varied between 16 and 32 nm. In contrast, poly(C9), formed spontaneously from isolated C9, had a uniform tubule length (+/- SEM) of 16 +/- 1 nm. On examination of MAC-phospholipid vesicle complexes, an elongated structure was detected that was closely associated with the poly(C9) tubule and that extended 16-18 nm beyond the torus of the tubule and 28-30 nm above the membrane surface. The width of this structure varied depending on its two-dimensional projection in the electron microscope. By using biotinyl C5b-6 in the formation of the MAC and avidin-coated colloidal gold particles for the ultrastructural analysis, this heretofore unrecognized subunit of the MAC could be identified as the tetramolecular C5b-8 complex. Identification also was achieved by using anti-C5 Fab-coated colloidal gold particles. A similar elongated structure of 25 nm length (above the surface of the membrane) was observed on single C5b-8-vesicle complexes. It is concluded that the C5b-8 complex, which catalyzes poly(C9) formation, constitutes a structure of discrete morphology that remains as such identifiable in the fully assembled MAC, in which it is closely associated with the poly(C9) tubule.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

ABSTRACT: BACKGROUND: Sphingomonas wittichii strain RW1 can completely oxidize dibenzo-p-dioxins and dibenzofurans, which are persistent contaminants of soils and sediments. For successful application in soil bioremediation systems, strain RW1 must cope with fluctuations in water availability, or water potential. Thus far, however, little is known about the adaptive strategies used by Sphingomonas bacteria to respond to changes in water potential. To improve our understanding, strain RW1 was perturbed with either the cell-permeating solute sodium chloride or the non-permeating solute polyethylene glycol with a molecular weight of 8000 (PEG8000). These solutes are assumed to simulate the solute and matric components of the total water potential, respectively. The responses to these perturbations were then assessed and compared using a combination of growth assays, transcriptome profiling, and membrane fatty acid analyses. RESULTS: Under conditions producing a similar decrease in water potential but without effect on growth rate, there was only a limited shared response to perturbation with sodium chloride or PEG8000. This shared response included the increased expression of genes involved with trehalose and exopolysaccharide biosynthesis and the reduced expression of genes involved with flagella biosynthesis. Mostly, the responses to perturbation with sodium chloride or PEG8000 were very different. Only sodium chloride triggered the increased expression of two ECF-type RNA polymerase sigma factors and the differential expression of many genes involved with outer membrane and amino acid metabolism. In contrast, only PEG8000 triggered the increased expression of a heat shock-type RNA polymerase sigma factor along with many genes involved with protein turnover and repair. Membrane fatty acid analyses further corroborated these differences. The degree of saturation of membrane fatty acids increased after perturbation with sodium chloride but had the opposite effect and decreased after perturbation with PEG8000. CONCLUSIONS: A combination of growth assays, transcriptome profiling, and membrane fatty acid analyses revealed that permeating and non-permeating solutes trigger different adaptive responses in strain RW1, suggesting these solutes affect cells in fundamentally different ways. Future work is now needed that connects these responses with the responses observed in more realistic scenarios of soil desiccation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bone marrow hematopoietic stem cells (HSCs) are crucial to maintain lifelong production of all blood cells. Although HSCs divide infrequently, it is thought that the entire HSC pool turns over every few weeks, suggesting that HSCs regularly enter and exit cell cycle. Here, we combine flow cytometry with label-retaining assays (BrdU and histone H2B-GFP) to identify a population of dormant mouse HSCs (d-HSCs) within the lin(-)Sca1+cKit+CD150+CD48(-)CD34(-) population. Computational modeling suggests that d-HSCs divide about every 145 days, or five times per lifetime. d-HSCs harbor the vast majority of multilineage long-term self-renewal activity. While they form a silent reservoir of the most potent HSCs during homeostasis, they are efficiently activated to self-renew in response to bone marrow injury or G-CSF stimulation. After re-establishment of homeostasis, activated HSCs return to dormancy, suggesting that HSCs are not stochastically entering the cell cycle but reversibly switch from dormancy to self-renewal under conditions of hematopoietic stress.