949 resultados para Reverse-transcriptase
Resumo:
Didanosine-loaded chitosan microspheres were developed applying a surface-response methodology and using a modified Maximum Likelihood Classification. The operational conditions were optimized with the aim of maintaining the active form of didanosine (ddI), which is sensitive to acid pH, and to develop a modified and mucoadhesive formulation. The loading of the drug within the chitosan microspheres was carried out by ionotropic gelation technique with sodium tripolyphosphate (TPP) as cross-linking agent and magnesium hydroxide (Mg(OH)2) to assure the stability of ddI. The optimization conditions were set using a surface-response methodology and applying the Maximum Likelihood Classification, where the initial chitosan concentration, TPP and ddI concentration were set as the independent variables. The maximum ddI-loaded in microspheres (i.e. 1433mg of ddI/g chitosan), was obtained with 2% (w/v) chitosan and 10% TPP. The microspheres depicted an average diameter of 11.42μm and ddI was gradually released during 2h in simulated enteric fluid.
Resumo:
Entry inhibitor is a new class of drugs that target the viral envelope protein. This region is variable; hence resistance to these drugs may be present before treatment. The aim of this study was to analyze the frequency of patients failing treatment with transcriptase reverse and protease inhibitors that would respond to the entry inhibitors Enfuvirtide, Maraviroc, and BMS-806. The study included 100 HIV-1 positive patients from one outpatient clinic in the city of Sao Paulo, for whom a genotype test was requested due to treatment failure. Proviral DNA was amplified and sequenced for regions of gp120 and gp41. A total of 80 could be sequenced and from those, 73 (91.3%), 5 (6.3%) and 2 (2.5%) were classified as subtype B, F, and recombinants (B/F and B/C), respectively. CXCR4 co-receptor use was predicted in 30% of the strains. Primary resistance to Enfuvirtide was found in 1.3%, following the AIDS Society consensus list, and 10% would be considered resistant if a broader criterion was used. Resistance to BMS-806 was higher; 6 (7.5%), and was associated to non-B strains. Strikingly, 27.5% of samples harbored one or more mutation among A316T, I323V, and S405A, which have been related to decreased susceptibility of Maraviroc; 15% of them among viruses predictive to be R5. A more common mutation was A316T, which was associated to the Brazilian B strain harboring the GWGR motif at the tip of V3 loop and their derivative sequences. These results may be impact guidelines for genotype testing and treatment in Brazil.
Resumo:
Early HIV-1 reverse transcription can be separated into initiation and elongation phases. Here we show, using PCR analysis of negative-strand strong-stop DNA [(-)ssDNA] synthesis in intact virus, that different reverse transcriptase (RT) inhibitors affect distinct phases of early natural endogenous reverse transcription (NERT), The effects of nevirapine on NERT were consistent with a mechanism of action including both specific and nonspecific binding events. The nonspecific component of this inhibition targeted the elongation reaction, whereas the specific effect seemed principally to be directed at very early events (initiation or the initiation-elongation switch), In contrast, foscarnet and the nucleoside analog ddATP inhibited both early and late (-)ssDNA synthesis in a similar manner. We also examined compounds that targeted other viral proteins and found that Ro24-7429 (a Tat antagonist) and rosmarinic acid (an integrase inhibitor) also directly inhibited RT, Our results indicate that NERT can be used to identify and evaluate compounds that directly target the reverse transcription complex.
Resumo:
Active surveillance for dengue (DEN) virus infected mosquitoes can be an effective way to predict the risk of dengue infection in a given area. However, doing so may pose logistical problems if mosquitoes must be kept alive or frozen fresh to detect DEN virus. In an attempt to simplify mosquito processing, we evaluated the usefulness of a sticky lure and a seminested reverse-transcriptase polymerase chain reaction assay (RT-PCR) for detecting DEN virus RNA under laboratory conditions using experimentally infected Aedes aegypti (L.) mosquitoes. In the first experiment, 40 male mosquitoes were inoculated with 0.13 mul of a 10(4) pfu/ml DEN-2 stock solution. After a 7-d incubation period, the mosquitoes were applied to the sticky lure and kept at room temperatures of 23-30 degreesC. Following 7,10,14, and 28 d application, 10 mosquitoes each were removed from the lure pooled and assayed for virus. DEN virus nucleic acid was clearly detectable in all pools up to 28 d after death. A second study evaluated sensitivity and specificity using one, two, and five DEN-infected mosquitoes removed after 7, 10, 14, 21 and 30 d application and tested by RT-PCR. All four DEN serotypes were individually inoculated in mosquitoes and evaluated using the same procedures as experiment 1. The four serotypes were detectable in as few as one mosquito 30 d after application to the lure with no evidence of cross-reactivity. The combination of sticky lures and RT-PCR show promise for mosquito and dengue virus surveillance and warrant further evaluation.
Resumo:
Laboratory diagnosis of human respiratory syncytial virus (hRSV) infections has traditionally been performed by virus isolation in cell culture and the direct fluorescent-antibody assay (DFA). Reverse transcriptase PCR (RT-PCR) is now recognized as a sensitive and specific alternative for detection of hRSV in respiratory samples. Using the LightCycler instrument, we developed a rapid RT-PCR assay for the detection of hRSV (the LC-RT-PCR) with a pair of hybridization probes that target the hRSV L gene. In the present study, 190 nasopharyngeal aspirate samples from patients with clinically recognized respiratory tract infections were examined for hRSV. The results were then compared to the results obtained with a testing algorithm that combined DFA and a culture-augmented DFA (CA-DFA) assay developed in our laboratory. hRSV was detected in 77 (41%) specimens by LC-RT-PCR and in 75 (39%) specimens by the combination of DFA and CA-DFA. All specimens that were positive by the DFA and CA-DFA testing algorithm were positive by the LC-RT-PCR. The presence of hRSV RNA in the two additional LC-RT-PCR-positive specimens was confirmed by a conventional RT-PCR method that targets the hRSV N gene. The sensitivity of LC-RT-PCR was 50 PFU/ml; and this, together with its high specificity and rapid turnaround time, makes the LC-RT-PCR suitable for the detection of hRSV in clinical specimens.
Resumo:
A new RTE-like, non-long terminal repeat retrotransposon, termed SjR2, from the human blood fluke, Schistosoma japonicum, is described. SjR2 is similar to3.9 kb in length and is constituted of a single open reading frame encoding a polyprotein with apurinic/apyrimidinic endonuclease and reverse transcriptase domains. The open reading frame is bounded by 5'- and 3'-terininal untranslated regions and, at its 3-terminus, SjR2 bears a short (TGAC)(3) repeat. Phylogenetic analyses based on conserved domains of reverse transcriptase or endonuclease revealed that SjR2 belonged to the RTE clade of non-long terminal repeat retrotransposons. Further, SjR2 was homologous, but probably not orthologous, to SR2 front the African blood fluke, Schistosoma mansoni; this RTE-like family of non-long terminal repeat retrotransposons appears to have arisen before the divergence of the extant schistosome species. Hybridisation analyses indicated that similar to 10,000 copies of SjR2 were dispersed throughout the S. japonicum chromosomes, accounting for up to 14% of the nuclear genome. Messenger RNAs encoding the reverse transcriptase and endonuclease domains of SjR2 were detected in several developmental stages of the schistosome, indicating that the retrotransposon was actively replicating within the genome of the parasite. Exploration of the coding and non-coding regions of SjR2 revealed two notable characteristics. First, the recombinant reverse transcriptase domain of SjR2 expressed in insect cells primed reverse transcription of SjR2 mRNA in vitro. By contrast, recombinant SjR2-endonuclease did not appear to cleave schistosome or plasmid DNA. Second, the 5'-untranslated region of SjR2 was >80% identical to the 3-untranslated region of a schistosome heat shock protein-70 gene (hsp-70) in the antisense orientation, indicating that SjR2-like elements were probably inserted into the non-coding regions of ancestral S. japonicum HSP-70, probably after the species diverged from S. mansoni. (C) 2002 Australian Society for Parasitology Inc. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Screening blood donations for anti-HCV antibodies and alanine aminotransferase (ALT) serum levels generally prevents the transmission of hepatitis C virus (HCV) by transfusion. The aim of the present study was to evaluate the efficiency of the enzyme immunoassay (EIA) screening policy in identifying potentially infectious blood donors capable to transmit hepatitis C through blood transfusion. We have used a reverse transcriptase (RT)-nested polymerase chain reaction (PCR) to investigate the presence of HCV-RNA in blood donors. The prevalence of HCV-RNA positive individuals was compared with the recombinant immunoblot assay (RIBA-2) results in order to assess the usefulness of both tests as confirmatory assays. Both tests results were also compared with the EIA-2 OD/C ratio (optical densities of the samples divided by the cut off value). ALT results were expressed as the ALT quotient (qALT), calculated dividing the ALT value of the samples by the maximum normal value (53UI/l) for the method. Donors (n=178) were divided into five groups according to their EIA anti-HCV status and qALT: group A (EIA > or = 3, ALT<1), group B (EIA > or = 3, ALT>1), group C (1<=EIA<3, ALT<1), group D (1<=EIA<3, ALT>1) and group E (EIA<=0.7). HCV sequences were detected by RT-nested PCR, using primers for the most conserved region of viral genome. RIBA-2 was applied to the same samples. In group A (n=6), all samples were positive by RT-nested PCR and RIBA-2. Among 124 samples in group B, 120 (96.8%) were RIBA-2 positive and 4 (3.2%) were RIBA-2 indeterminate but were seropositive for antigen c22.3. In group B, 109 (87.9%) of the RIBA-2 positive samples were also RT-nested PCR positive, as well as were all RIBA-2 indeterminate samples. In group C, all samples (n=9) were RT-nested PCR negative: 4 (44.4%) were also RIBA-2 negative, 4 (44.4%) were RIBA-2 positive and 1 (11.1%) was RIBA-2 indeterminate. HCV-RNA was detected by RT-nested PCR in 3 (37.5%) out of 8 samples in group D. Only one of them was also RIBA-2 positive, all the others were RIBA-2 indeterminate. All of the group E samples (controls) were RT- nested PCR and RIBA-2 negative. Our study suggests a strong relation between anti-HCV EIA-2 ratio > or = 3 and detectable HCV-RNA by RT-nested PCR. We have also noted that blood donors with RIBA-2 indeterminate presented a high degree of detectable HCV-RNA using RT-nested PCR (75%), especially when the c22.3 band was detected.
Resumo:
The aim of this study was to evaluate the genotypic resistance profiles of HIV-1 in children failing highly active antiretroviral therapy (HAART). Forty-one children (median age = 67 months) receiving HAART were submitted to genotypic testing when virological failure was detected. cDNA was extracted from PBMCs and amplified by nested PCR for the reverse transcriptase and protease regions of the pol gene. Drug resistance genotypes were determined from DNA sequencing. According to the genotypic analysis, 12/36 (33.3%) and 6/36 (16.6%) children showed resistance and possible resistance, respectively, to ZDV; 5/36 (14%) and 4/36 (11.1%), respectively, showed resistance and possible resistance to ddI; 4/36 (11.1%) showed resistance to 3TC and D4T; and 3/36 (8.3%) showed resistance to Abacavir. A high percentage (54%) of children exhibited mutations conferring resistance to NNRTI class drugs. Respective rates of resistance and possible resistance to PIs were: RTV (12.2%, 7.3%); APV (2.4%, 12.1%); SQV(0%, 12.1%); IDV (14.6%, 4.9%), NFV (22%, 4.9%), LPV/RTV (2.4%, 12.1%). Overall, 37/41 (90%) children exhibited virus with mutations related to drug resistance, while 9% exhibited resistance to all three antiretroviral drug classes.
Resumo:
During the first steps of reverse transcription of the retroviral genome, sequences present at the extremities of the RNA are used to reconstitute a host cell PolII promoter. The assembly of the promoter occurs by template switching, which takes advantage of a direct repeat at the ends of the RNA molecule. These steps are catalysed by the viral reverse transcriptase, which carries an intrinsic RNaseH activity that is probably also involved therein. To study the role of the RNaseH activity in this first template-switching event, an in vitro system has been developed based on primer extensions of synthetic RNAs. When an RNA was reverse transcribed with wild-type reverse transcriptase in the presence of a second RNA the 3' part of which was repeated at the 5' end of the first one, extension products could be observed corresponding to a chimeric cDNA comprising both RNA species. This template switching could not be detected when a mutant reverse transcriptase lacking the RNaseH activity was used. The results show that the RNaseH activity is needed to remove the 5' RNA sequences from the cDNA:RNA hybrid thereby enabling its translocation to another RNA containing an appropriate complementary target sequence.
Resumo:
Human immunodeficiency virus type 1 (HIV-1) variants resistant to protease (PR) and reverse transcriptase (RT) inhibitors may display impaired infectivity and replication capacity. The individual contributions of mutated HIV-1 PR and RT to infectivity, replication, RT activity, and protein maturation (herein referred to as "fitness") in recombinant viruses were investigated by separately cloning PR, RT, and PR-RT cassettes from drug-resistant mutant viral isolates into the wild-type NL4-3 background. Both mutant PR and RT contributed to measurable deficits in fitness of viral constructs. In peripheral blood mononuclear cells, replication rates (means +/- standard deviations) of RT recombinants were 72.5% +/- 27.3% and replication rates of PR recombinants were 60.5% +/- 33.6% of the rates of NL4-3. PR mutant deficits were enhanced in CEM T cells, with relative replication rates of PR recombinants decreasing to 15.8% +/- 23.5% of NL4-3 replication rates. Cloning of the cognate RT improved fitness of some PR mutant clones. For a multidrug-resistant virus transmitted through sexual contact, RT constructs displayed a marked infectivity and replication deficit and diminished packaging of Pol proteins (RT content in virions diminished by 56.3% +/- 10.7%, and integrase content diminished by 23.3% +/- 18.4%), a novel mechanism for a decreased-fitness phenotype. Despite the identified impairment of recombinant clones, fitness of two of the three drug-resistant isolates was comparable to that of wild-type, susceptible viruses, suggestive of extensive compensation by genomic regions away from PR and RT. Only limited reversion of mutated positions to wild-type amino acids was observed for the native isolates over 100 viral replication cycles in the absence of drug selective pressure. These data underscore the complex relationship between PR and RT adaptive changes and viral evolution in antiretroviral drug-resistant HIV-1.
Resumo:
The aim of this study was to develop a polymerase chain reaction (PCR) for the detection of respiratory syncytial virus (RSV) genomes. The primers were designed from published sequences and selected from conserved regions of the genome encoding for the N protein of subgroups A and B of RSV. PCR was applied to 20 specimens from children admitted to the respiratory ward of "William Soler" Pediatric Hospital in Havana City with a clinical diagnosis of bronchiolitis. The PCR was compared with viral isolation and with an indirect immunofluorescence technique that employs monoclonal antibodies of subgroups A and B. Of 20 nasopharyngeal exudates, 10 were found positive by the three assayed methods. In only two cases, samples that yielded positive RNA-PCR were found negative by indirect immunofluorescence and cell culture. Considering viral isolation as the "gold standard" technique, RNA-PCR had 100% sensitivity and 80% specificity. RNA-PCR is a specific and sensitive technique for the detection of the RSV genome. Technical advantages are discussed
Resumo:
A rapid identification of dengue viruses from clinical samples by using a nested reverse transcriptase-polymerase chain reaction (RT-PCR) procedure was carried out for diagnostic and epidemiological purposes. RT-PCR identified DEN-1 and DEN-2 viruses in 41% (41/100) of previously confirmed cases and provided an accurate confirmation of DHF in four fatal cases. RT-PCR was also useful for detecting and typing dengue viruses in suspected cases, allowing a rapid identification of new serotypes in endemic areas
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Resumo:
Background and aim: H epatitis E v irus (HEV) infection has emerged as a c ause o f travel-related a nd autochthonous a cute hepatitis as well as chronic hepatitis in immunosuppressed patients. While t ravel-related cases a re c aused primarily b y infections w ith HEV of g enotype 1 ( HEV-1), autochthonous c ases a nd chronic cases a re d ue t o genotype 3 (HEV-3), which is s hared between humans and diverse animal species. The aim of this study was to establish HEV RNA detection assays f or q uantitative v iral load testing and genotyping. Methods: V iral RNA was p urified from plasma or s erum a nd converted to cDNA prior to (1) multiplex real-time PCR for HEV RNA quantification and (2) multiplex PCR coupled to DNA sequencing for HEV genotype determination. Real-time PCR was d esigned to match a ll known HEV genotypes available i n Genbank while PCR was designed using conserved primers flanking a variable region of the HEV RNA. Results: In a validation panel, the newly developed assays allowed for the reliable detection and genotyping of HEV-1 or HEV-3. Cases of t ravel-related and a utochthonous a cute h epatitis E a s well a s chronic hepatitis E i n immunosuppressed patients have b een identified using t hese a ssays a nd will be p resented in detail. Anti- HEV antibodies were n egative i n three well-characterized patients with chronic hepatitis E after organ transplantation. Conclusions: We developed and validated a quantitative HEV RNA detection assay that c an now be o ffered on a r outine basis (www.chuv.ch/imul/imu-collaborations-viral_hepatitis). Genotyping can also be offered on selected cases. HEV RNA detection is key in diagnosing chronic hepatitis E i n immunosuppressed patients with unexplained transaminase elevations, as serology can be negative in these patients.
Resumo:
RESUME La télomérase est une enzyme dite "d'immortalité" qui permet aux cellules de maintenir la longueur de leurs télomères, ce qui confère une capacité de réplication illimitée aux cellules reproductrices et cancéreuses. A l'inverse, les cellules somatiques normales, qui n'expriment pas la télomérase, ont une capacité de réplication limitée. La sous-unité catalytique de la télomérase, hTERT, est définie comme le facteur limitant l'activité télomérasique. Entre activateurs et répresseurs, le rôle de la méthylation de l'ADN et de l'acétylation des histones, de nombreux modèles ont été suggérés. La découverte de l'implication de CTCF dans la régulation transcriptionnelle de hTERT explique en partie le mécanisme de répression de la télomérase dans la plupart des cellules somatiques et sa réactivation dans les cellules tumorales. Dans les cellules télomérase-positives, l'activité inhibitrice de CTCF est bloquée par un mécanisme dépendent ou non de la méthylation. Dans la plupart des carcinomes, une hyperméthylation de la région 5' de hTERT bloque l'effet inhibiteur de CTCF, alors qu'une petite région hypométhylée permet un faible niveau de transcription du gène. Nous avons démontré que la protéine MBD2 se lie spécifiquement sur la région 5' méthylée de hTERT dans différentes lignées cellulaires et qu'elle est impliquée dans la répression partielle de la transcription de hTERT dans les cellules tumorales méthylées. Par contre, nous avons montré que dans les lymphocytes B normaux et néoplasiques, la régulation de hTERT est indépendante de la méthylation. Dans ces cellules, le facteur PAX5 se lie sur la région 5' de hTERT en aval du site d'initiation de la traduction (ATG). L'expression exogène de PAX5 dans les cellules télomérase-négatives active la transcription de hTERT, alors que la répression de PAX5 dans les cellules lymphomateuses inhibe la transcription du gène. PAX5 est donc directement impliqué dans l'activation de l'expression de hTERT dans les lymphocytes B exprimant la télomérase. Ces résultats révèlent des différences entre les niveaux de méthylation de hTERT dans les cellules de carcinomes et les lymphocytes B exprimant la télomérase. La méthylation de hTERT en tant que biomarqueur de cancer a été évaluée, puis appliquée à la détection de métastases. Nous avons ainsi montré que la méthylation de hTERT est positivement corrélée au diagnostic cytologique dans les liquides céphalorachidiens. Nos résultats conduisent à un modèle de régulation de hTERT, qui aide à comprendre comment la transcription de ce gène est régulée par CTCF, avec un mécanisme lié ou non à la méthylation du gène hTERT. La méthylation de hTERT s'est aussi révélée être un nouveau et prometteur biomarqueur de cancer. SUMMARY Human telomerase is an "immortalizing" enzyme that enables cells to maintain telomere length, allowing unlimited replicative capacity to reproductive and cancer cells. Conversely, normal somatic cells that do not express telomerase have a finite replicative capacity. The catalytic subunit of telomerase, hTERT, is defined as the limiting factor for telomerase activity. Between activators and repressors, and the role of DNA methylation and histone acetylation, an abundance of hTERT regulatory models have been suggested. The discovery of the implication of CTCF in the transcriptional regulation of hTERT in part explained the mechanism of silencing of telomerase in most somatic cells and its reactivation in neoplastic cells. In telomerase-positive cells, the inhibitory activity of CTCF is blocked by methylation-dependent and -independent mechanisms. In most carcinoma cells, hypermethylation of the hTERT 5' region has been shown to block the inhibitory effect of CTCF, while a short hypomethylated region allows a low transcription level of the gene. We have demonstrated that MBD2 protein specifically binds the methylated 5' region of hTERT in different cell lines and is therefore involved in the partial repression of hTERT transcription in methylated tumor cells. In contrast, we have shown that in normal and neoplastic B cells, hTERT regulation is methylation-independent. The PAX5 factor has been shown to bind to the hTERT 5'region downstream of the ATG translational start site. Ectopic expression of PAX5 in telomerase-negative cells or repression of PAX5 expression in B lymphoma cells respectively activated and repressed hTERT transcription. Thus, PAX5 is strongly implicated in hTERT expression activation in telomerase-positive B cells. These results reveal differences between the hTERT methylation patterns in telomerase-positive carcinoma cells and telomerase-positive normal B cells. The potential of hTERT methylation as a cancer biomarker was evaluated and applied to the detection of metastasis. We have shown that hTERT methylation correlates with the cytological diagnosis in cerebrospinal fluids. Our results suggest a model of hTERT gene regulation, which helps us to better understand how hTERT transcription is regulated by CTCF in methylation-dependant and independent mechanisms. Our data also indicate that hTERT methylation is a promising new cancer biomarker.