870 resultados para Reverse osmosis
Resumo:
Reverse osmosis (RO) is used by coal seam gas (CSG) operators to treat produced water as it is a well-established and proven technology worldwide. Despite the suitability of RO, there are problems associated with RO technology such as membrane fouling which although not preventing use of RO does decrease effectiveness and increase operating costs. Hence, effective pre-treatment of water samples is essential. Electrocoagulation (EC) potentially can provide improved water purification compared to conventional coagulation prior to an RO unit. This paper provides the first reported study of EC for CSG water pre-treatment and compares the performance to a range of aluminium and iron based coagulants. It was found that EC was superior in terms of removal of silica, calcium, magnesium, barium and strontium in the produced water.
Resumo:
It is well known that the neutralisation of Bayer liquor with seawater causes the precipitation of stable alkaline products and a reduction in pH and dissolved metal concentrations in the effluent. However, there is limited information available on solution chemistry effects on the stability and reaction kinetics of these precipitates. This investigation shows the influence of reactive species (magnesium and calcium) in seawater on precipitate stabilities and volumetric efficiencies during the neutralisation of bauxite refinery residues. Correlations between synthetic seawater solutions and real samples of seawater (filtered seawater, nanofiltered seawater and reverse osmosis brine) have been made. These investigations have been used to confirm that alternative seawater sources can be used to increase the productivity potential of the neutralisation process with minimal implications on the composition and stability of precipitates formed. The volume efficiency of the neutralisation process using synthetic analogues has been shown to be almost directly proportional with the concentration of magnesium. This was further confirmed in the nanofiltered seawater and reverse osmosis brine that showed increases in the efficiency of neutralisation by factors of 3 and 2 compared to seawater, which corresponds with relatively the same increase in the concentration of magnesium in these alternative seawater sources. An assessment of the chemical stability of the precipitates, volumetric efficiency, and discharge water quality have been determined using numerous techniques that include pH, conductivity, inductively coupled plasma optical emission spectroscopy, infrared spectroscopy, thermogravimetric analysis coupled to mass spectrometry and X-ray diffraction. Correlations between synthetic solution compositions and alternative seawater sources have been used to determine if alternative seawater sources are potential substitutes for seawater based on improvements in productivity, implementation costs, savings to operations and environmental benefits.
Resumo:
Queensland pineapple production for the year ending 31 March, 1986, was 142000 t (ABS 1988). Pineapple juice provides the major processing outlet, accounting for about 70% of the State's fruit juice output. Most juice is concentrated by vacuum evaportion to reduce storage and transport costs. In recent years, reverse osmosis (R.O.) has found increasing application for concentrating food liquids, particularly dairy products (Schmidt, 1987). Advantages include lower energy consumption and better product quality retention. There have been a number of publications on fruit juice concentration by R.O. These have included apple juice (Sheu and Wiley 1984; Chua et al 1987; Paulson 1985), orange juice (Papanicolaou et al 1984), mandarin juice (Fukutani and Ogawa 1983, tomato juice (Robe 1983; Watanabe 1982; Gheradi et al 1986), grapefruit and lemon juices (Braddock et al 1988). However, information on pineapple juice concentration by R.O. is lacking. The aim of this research was to measure the effects of juice pre-treatment, operating temperature, membrane type, flow rate, pressure and degree of concentration on pineapple juice R.O.
Resumo:
Reverse osmosis (RO) brine produced at a full-scale coal seam gas (CSG) water treatment facility was characterized with spectroscopic and other analytical techniques. A number of potential scalants including silica, calcium, magnesium, sulphates and carbonates, all of which were present in dissolved and non-dissolved forms, were characterized. The presence of spherical particles with a size range of 10–1000 nm and aggregates of 1–10 microns was confirmed by transmission electron microscopy (TEM). Those particulates contained the following metals in decreasing order: K, Si, Sr, Ca, B, Ba, Mg, P, and S. Characterization showed that nearly one-third of the total silicon in the brine was present in the particulates. Further, analysis of the RO brine suggested supersaturation and precipitation of metal carbonates and sulphates during the RO process should take place and could be responsible for subsequently capturing silica in the solid phase. However, the precipitation of crystalline carbonates and sulphates are complex. X-ray diffraction analysis did not confirm the presence of common calcium carbonates or sulphates but instead showed the presence of a suite of complex minerals, to which amorphous silica and/or silica rich compounds could have adhered. A filtration study showed that majority of the siliceous particles were less than 220 nm in size, but could still be potentially captured using a low molecular weight ultrafiltration membrane.
Resumo:
Salinity gradient power is proposed as a source of renewable energy when two solutions of different salinity are mixed. In particular, Pressure Retarded Osmosis (PRO) coupled with a Reverse Osmosis process (RO) has been previously suggested for power generation, using RO brine as the draw solution. However, integration of PRO with RO may have further value for increasing the extent of water recovery in a desalination process. Consequently, this study was designed to model the impact of various system parameters to better understand how to design and operate practical PRO-RO units. The impact of feed salinity and recovery rate for the RO process on the concentration of draw solution, feed pressure, and membrane area of the PRO process was evaluated. The PRO system was designed to operate at maximum power density of . Model results showed that the PRO power density generated intensified with increasing seawater salinity and RO recovery rate. For an RO process operating at 52% recovery rate and 35 g/L feed salinity, a maximum power density of 24 W/m2 was achieved using 4.5 M NaCl draw solution. When seawater salinity increased to 45 g/L and the RO recovery rate was 46%, the PRO power density increased to 28 W/m2 using 5 M NaCl draw solution. The PRO system was able to increase the recovery rate of the RO by up to 18% depending on seawater salinity and RO recovery rate. This result suggested a potential advantage of coupling PRO process with RO system to increase the recovery rate of the desalination process and reduce brine discharge.
Resumo:
Reverse osmosis (RO) membranes have been used extensively in water desalination plants, waste water treatment in industries, agricultural farms and drinking water production applications. The objective of this work is to impart antibacterial and antifungal activities to commercially available RO membrane used in water purification systems by incorporating biogenic silver nanoparticles (AgNPs) synthesized using Rosa indica wichuriana hybrid leaf extract. The morphology and surface topography of uncoated and AgNPs-coated RO membrane were studied using Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM). Elemental composition of the AgNPs-coated RO membrane was analyzed by energy-dispersive X-ray spectroscopy (EDAX). The functional groups were identified by Fourier Transform Infrared spectroscopy (FT-IR). Hydrophilicity of the uncoated and AgNPs-coated RO membrane was analyzed using water contact angle measurements. The thermal properties were studied by thermogravimetric analysis (TGA). The AgNPs incorporated RO membrane exhibited good antibacterial and antifungal activities against pathogenic bacterial strains such as E. coli, S. aureus, M. luteus, K. pneumoniae, and P. aeruginosa and fungal strains such as Candida tropicalis, C. krusei, C. glabrata, and C. albicans.
Resumo:
于2010-11-23批量导入
Resumo:
The surface of aromatic polyamide reverse osmosis composite membrane was modified by oxygen and argon plasma. The water permeability of oxygen-plasma-modified membrane increases, and the chlorine resistance of argon-plasma-modified membrane increases. The spectra of the attenuated total reflection-Fourier transform infrared and X-ray photoelectron spectroscopy and the contact angle of the water were analyzed to explain the improvement of the two performances of the composite membrane. The carboxyl groups were introduced when modified by oxygen plasma, and cross-linking occurred when modified by argon plasma. (C) 1997 John Wiley & Sons, Inc.
Resumo:
Truly chlorine-resistant polyamide reverse osmosis composite membranes were prepared by cross-linking the interface of the composite membrane. Such membranes possessed chlorine resistance one order of magnitude more than those of the commercially used polyamide composite membranes. The effect of the degree of cross-linking on chlorine resistance was also described. (C) 1996 John Wiley & Sons, Inc.
Resumo:
Skim milk was concentrated by reverse osmosis (RO), nanofiltration (NF) and ultrafiltration (UF) and the retentates were spray-dried. The resulting powders were reconstituted to 25% TS and sterilised to evaluate their heat stability. Reverse osmosis led to maximum retention of calcium, a fall in pH for its retentate and its reconstituted powder. All RO powders produced a weak gel on heating. Some calcium was lost during NF and a greater amount during UF. Their resulting reconstituted powders had a higher pH than those produced by RO. Powders produced by UF showed poor heat stability. Only one powder produced by NF showed good heat stability. This could be improved by addition of stabilisers at appropriate addition rates.
Resumo:
Desalinated brackish groundwater is becoming a new source of water supply to comply with growing water demands, especially in (semi-) arid countries. Recent publications show that some chemical compounds may persist in an unaltered form after the desalination processes and that there is an associated risk of mixing waters with different salinity for irrigation. At the university of Alicante campus (Spain), a mix of desalinated brackish groundwater and water from the existing aquifer is currently applied for landscape irrigation. The presence of 209 emerging compounds, surfactants, priority substances according to the 2008/105/EC Directive, 11 heavy metals and microbiological organisms in blended water and aquifer samples was investigated. Thirty-five compounds were detected (pesticides, pharmaceuticals and surfactants) among them two priority substances α-endosulfan and Ni were found above the permitted maximum concentration. Blended water used for landscape irrigation during the summer period is supersaturated with respect to carbonates, which may ultimately lead to mineral precipitation in the soil-aquifer media and changes in hydraulic parameters.
Resumo:
Mode of access: Internet.