134 resultados para Retroviruses


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective. Circumstantial evidence links retroviruses (RVs) with human autoimmune diseases, The aim of the present study was to obtain direct evidence of RV gene expression in rheumatoid arthritis (RA). Methods. Synovial samples were obtained from patients with RA, patients with osteoarthritis (OA), and normal control subjects, Reverse transcription-polymerase chain reaction (RT-PCR) was performed using synovial RNA and primers to conserved sequences in the polymerase (pol) genes of known RVs. Results. PCR products (n = 857) were cloned and sequenced, Multiple pol transcripts, many with open reading frames, were expressed in every sample, Sequences were aligned and classified into 6 families (F1-F6) that contained 33 groups of known and unknown endogenous RVs (ERVs), each distinguished by a specific, deduced peptide motif, The frequency of sequences in each family was similar between RA, OA, and normal synovial tissue, but differed significantly in RA synovial fluid cells, F1 sequences (undefined, but related to murine and primate type C RVs) were lower in frequency, F2 (ERV-9-related), F4 (HERV-K-related), and F6 (HERV-L-related) sequences were higher in frequency, and F3 (RTVL-H-related) sequences were not detected, in the RA synovial fluid cells compared with the RA synovial tissues. Conclusion. Multiple ERVs are expressed in normal and diseased synovial compartments, but specific transcripts can be differentially expressed in RA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main focus of the human genome sequencing project has been gene discovery, but a great additional benefit is that it offers the chance to examine the large proportion of the genome that does not contain human genes. The nature of this ‘noncoding’ DNA is poorly understood, both as an evolutionary question (how did it get there?) and in the functional sense (what is it doing now?). Much of the noncoding DNA is derived from retroviruses that have inserted their DNA into the genome. The availability of complete genomic sequences will revolutionize studies of the number and location of endogenous retroviruses, their role in genome evolution, and their contribution to human disease.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Some viruses of the families Retroviridae, such as Human T Lymphotropic Virus (HTLV); Herpesviridae as the Cytomegalovirus (CMV) and Hepadnaviridae such as the Hepatitis B Virus (HBV) are liable to be co-transmitted with the Human Immunodeficiency Virus (HIV). Since prisoners are exposed to several and important risk factors involved in the transmission of HIV and the above mentioned viruses, male inmates from the penitentiary complex of Campinas, SP, Brazil, including HIV + and HIV - ones, were examined for the presence of HTLV-I and/or II antibodies; IgG and IgM anti-CMV antibodies, and the research of the superficial hepatitis B antigen (HBsAg). The presence of anti-HTLV-I and/or II was determined by the Western Blot (WB) technique, whereas IgG and IgM anti-CMV and the search of HBsAg were carried out by the Microparticle Enzyme Immunoassay (MEIA-Abbott Lab).With regard to anti-HTLV-I and/or II, 58.3% (14/24-Number of positive reactions/number of sera examined) were reactive among the anti-HIV positive sera. Conversely, only 12.5% (3/24) among the HIV- negative sera showed positive reactions to HTLV-I and/or II antibodies. When looking for IgG anti-CMV percentages of 97.7% (43/44) and 95% (38/40) were obtained for anti-HIV positive and negative sera, respectively. As to IgM anti-CMV antibodies 11.36% (5/44) and 2.5% (1/40) of reactive sera were found for anti-HIV positive and negative, respectively. The HBsAg was found in 12.8% (5/39) of the sera which were anti-HIV positive.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les virus exploitent la machinerie cellulaire de l'hôte pour se répliquer. Ils doivent s'adapter pour infecter la cellule hôte de manière optimale tout en échappant à la vigilance du système de défense de l'hôte. Ainsi l'hôte et les virus se livrent à de constantes batailles évolutives. Mon travail de thèse a porté sur l'étude des signatures évolutives de facteurs de l'hôte agissant comme des 'facteurs de restriction' en bloquant la réplication rétrovirale chez les primates. Plus spécifiquement, mon travail a visé à utiliser des données évolutives pour renseigner les analyses fonctionnelles et la biologie. Nous avons étudié le facteur anti-VIH-1 nommé TRIM5a (i) chez les prosimiens pour mieux comprendre son rôle dans le contrôle d'un lentivirus endogène, (ii) dans son activité contre d'autres anciennes infections représentées par des rétrovirus endogènes humains et (iii) en tant que protéine capable de générer des mutants de la capside. Premièrement nous nous sommes intéressés à TRIM5a chez deux espèces de lémuriens dont Microcebus murinus qui porte le lentivirus endogène PSIV dans son génome depuis plusieurs millions d'années,. Nous avons observé que TRIM5a chez M. murinus a un spectre d'activité antivirale réduit à l'opposé de TRIM5a chez le Lemur catta - non porteur du PSIV endogène - qui bloque une large variété de rétrovirus dont le PSIV. De ce fait TRIM5a aurait pu contribuer à protéger certaines espèces de lémuriens vis-à-vis d'anciennes infections par le PSIV. A l'inverse du PSIV, des virus dérivés des rétrovirus endogènes humains HERV-K and HERV-H se sont révélés largement résistants à l'inhibition par TRIM5a. Ces données illustrent une absence de protection par TRIM5a face à d'autres anciennes infections rétrovirales. Puis, pour évaluer l'impact de la protéine TRIM5a humaine sur le VIH-1, nous avons testé l'effet de mutations des résidues sous sélection positive dans la capside du VIH-1 sur l'inhibition par TRIM5a. Nos résultats montrent que TRIM5a ne jouerait pas un rôle significatif dans l'évolution de la capside du VIH-1. Enfin notre travail a porté sur le facteur anti-VIH-1 SAMHD1 récemment découvert, que nous avons séquencé chez 25 espèces de primates. L'analyse évolutive des sites sous sélection positive et des expériences fonctionnelles ont permis d'identifier le domaine de SAMHD1 interagissant avec la protéine lentivirale Vpx. De même que d'autres protéines virales contrecarrent les facteurs de restriction en les menant à la dégradation, nous avons observé que Vpx induit la dégradation de SAMHD1 de manière spécifique à l'espèce. Ces découvertes contribuent à comprendre comment les facteurs de restriction et les virus co-évoluent pour se neutraliser l'un l'autre. - Viruses hijack the host cellular machinery to replicate. They adapt to infect optimally host cells while escaping host defense systems. Viruses and the host coevolve in an evolutionary struggle. My thesis work has been devoted to study the evolutionary signatures of host factors acting as restriction factors that block retroviral replication in primates. Specifically, my work aimed at using evolutionary data to inform functional analyses and biology. We studied the anti-HIV-1 factor TRIM5a (i) in prosimians to better understand its possible role in the control of an endogenous lentivirus, (ii) in its activity against other ancient infections - as represented by HERVs, and (iii) as a protein capable of generating escape mutants in the viral capsid. First, my work focused on two lemur species, one of which was the gray mouse lemur that carries the endogenous lentivirus PSIV integrated in its genome for several million years. TRIM5a from gray mouse lemur exhibited a limited antiviral spectrum as opposed to TRIM5a from ring-tailed lemur - not a host of PSIV - that is able to block diverse retroviruses notably PSIV. These results support the possible contribution of TRIM5a in protecting lemur species from ancient infection by PSIV. In contrast, chimeric viruses derived from two human endogenous retroviruses were broadly resistant to TRIM5a-mediated restriction, suggesting TRIM5a lack of activity against other types of ancient infections. To evaluate the recent impact of human TRIM5a on HIV-1 evolution, we tested whether variants at positively selected sites in the HIV-1 capsid affected the ability of human TRIM5a alleles to restrict HIV-1. Our results indicate that TRIM5a does not play a significant role in the evolution of HIV1 capsid. At last, our work concentrated on the newly discovered anti-HIV-1 restriction factor SAMHD1. We determined its coding sequence in a panel of 25 species of primates. Evolutionary analyses of positively selected sites in SAMHD1 domains and functional assays identified the domain of SAMHD1 interacting with the lentiviral protein Vpx. Similar to other viral countermeasures targeting cellular restriction factors, Vpx was responsible of the degradation of SAMHD1 orthologs in a species-specific manner. These findings contributed to understanding how restriction factors and viruses evolve to counteract each other.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Analysis of TRIM5α and APOBEC3G genes suggests that these two restriction factors underwent strong positive selection throughout primate evolution. This pressure was possibly imposed by ancient exogenous retroviruses, of which endogenous retroviruses are remnants. Our study aims to assess in vitro the activity of these factors against ancient retroviruses by reconstructing their ancestral gag sequences, as well as the ancestral TRIM5α and APOBEC3G for primates. Based on evolutionary genomics approach, we reconstructed ancestors of the two largest families of human endogenous retroviruses (HERV), namely HERV-K and HERV-H, as well as primate ancestral TRIM5α and APOBEC3G variants. The oldest TRIM5α sequence was the catarhinne TRIM5α, common ancestor of Old World monkeys and hominoids, dated from 25 million years ago (mya). From the oldest, to the youngest, ancestral TRIM5α variants showed less restriction of HIV-1 in vitro [1]. Likewise three ancestral APOBEC3Gs sequences common to hominoids (18 mya), Old World monkeys, and catarhinnes (25 mya) were reconstructed. All ancestral APOBEC3G variants inhibited efficiently HIV-1Δvif in vitro, compared to modern APOBEC3Gs. The ability of Vif proteins (HIV-1, HIV-2, SIVmac and SIVagm) to counteract their activity tallied with the residue 128 on ancestral APOBEC3Gs. Moreover we are attempting to reconstruct older ancestral sequences of both restriction factors by using prosimian orthologue sequences. An infectious onemillion- years-old HERV-KCON previously reconstituted was shown to be resistant to modern TRIM5α and APOBEC3G [2]. Our ancestral TRIM5α and APOBEC3G variants were inactive against HERV-KCON. Besides we reconstructed chimeric HERV-K bearing ancestral capsids (up to 7 mya) that resulted in infectious viruses resistant to modern and ancestral TRIM5α. Likewise HERV-K viruses bearing ancestral nucleocapsids will be tested for ancestral and modern APOBEC3G restriction. In silico reconstruction and structural modeling of ancestral HERV-H capsids resulted in structures homologous to that of the gammaretrovirus MLV. Thus we are attempting to construct chimeric MLV virus bearing HERV-H ancestral capsids. These chimeric ancestral HERVs will be tested for infectivity and restriction by ancestral TRIM5α. Similarly chimeric MLV viruses bearing ancestral HERV-H nucleocapsids will be reconstructed and tested for APOBEC3G restriction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lentiviruses, the genus of retrovirus that includes HIV-1, rarely endogenize. Some lemurs uniquely possess an endogenous lentivirus called PSIV ("prosimian immunodeficiency virus"). Thus, lemurs provide the opportunity to study the activity of host defense factors, such as TRIM5α, in the setting of germ line invasion. We characterized the activities of TRIM5α proteins from two distant lemurs against exogenous retroviruses and a chimeric PSIV. TRIM5α from gray mouse lemur, which carries PSIV in its genome, exhibited the narrowest restriction activity. One allelic variant of gray mouse lemur TRIM5α restricted only N-tropic murine leukemia virus (N-MLV), while a second variant restricted N-MLV and, uniquely, B-tropic MLV (B-MLV); both variants poorly blocked PSIV. In contrast, TRIM5α from ring-tailed lemur, which does not contain PSIV in its genome, revealed one of the broadest antiviral activities reported to date against lentiviruses, including PSIV. Investigation into the antiviral specificity of ring-tailed lemur TRIM5α demonstrated a major contribution of a 32-amino-acid expansion in variable region 2 (v2) of the B30.2/SPRY domain to the breadth of restriction. Data on lemur TRIM5α and the prediction of ancestral simian sequences hint at an evolutionary scenario where antiretroviral specificity is prominently defined by the lineage-specific expansion of the variable loops of B30.2/SPRY.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Feline immunodeficiency virus (FIV)-based gene transfer systems are being seriously considered for human gene therapy as an alternative to vectors based on primate lentiviruses, a genetically complex group of retroviruses capable of infecting non-dividing cells. The greater phylogenetic distance between the feline and primate lentiviruses is thought to reduce chances of the generation of recombinant viruses. However, safety of FIV-based vector systems has not been tested experimentally. Since primate lentiviruses such as human and simian immunodeficiency viruses (HIV/SIV) can cross-package each other's genomes, we tested this trait with respect to FIV. Unexpectedly, both feline and primate lentiviruses were reciprocally able to both cross-package and propagate each other's RNA genomes. This was largely due to the recognition of viral packaging signals by the heterologous proteins. However, a simple retrovirus such as Mason-Pfizer monkey virus (MPMV) was unable to package FIV RNA. Interestingly, FIV could package MPMV RNA, but not propagate it for further steps of replication. These findings suggest that upon co-infection of the same host, cross-packaging may allow distinct retroviruses to generate chimeric variants with unknown pathogenic potential. ^ In order to understand the packaging determinants in FIV, we conducted a detailed mutational analysis of the region thought to contain FIV packaging signal. We show that the first 90–120 nt of the 5′ untranslated region (UTR) and the first 90 nt of gag were simultaneously required for efficient FIV RNA packaging. These results suggest that the primary FIV packaging signal is multipartite and discontinuous, composed of two core elements separated by 150 nt of the 5 ′UTR. ^ The above studies are being used towards the development of safer FIV-based self-inactivating (SIN) vectors. These vectors are being designed to eliminate the ability of FIV transfer vector RNAs to be mobilized by primate lentiviral proteins that may be present in the target cells. Preliminary test of the first generation of these vectors has revealed that they are incapable of being propagated by feline proteins. The inability of FIV transfer vectors to express packageable vector RNA after integration should greatly increase the safety of FIV vectors for human gene therapy. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The human endogenous retrovirus K (HERV-K) family of endogenous retroviruses consists of ≈50 proviral copies per haploid human genome. Herein, the HERV-Ks are shown to encode a sequence-specific nuclear RNA export factor, termed K-Rev, that is functionally analogous to the HIV-1 Rev protein. Like HIV-1 Rev, K-Rev binds to both the Crm1 nuclear export factor and to a cis-acting viral RNA target to activate nuclear export of unspliced RNAs. Surprisingly, this HERV-K RNA sequence, which is encoded within the HERV-K long terminal repeat, is also recognized by HIV-1 Rev. These data provide surprising evidence for an evolutionary link between HIV-1 and a group of endogenous retroviruses that first entered the human genome ≈30 million years ago.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We describe a multiplex nucleic acid assay that identifies and determines the abundance of four different pathogenic retroviruses (HIV-1, HIV-2, and human T-lymphotrophic virus types I and II). Retroviral DNA sequences are amplified in a single, sealed tube by simultaneous PCR assays, and the resulting amplicons are detected in real time by the hybridization of four differently colored, amplicon-specific molecular beacons. The color of the fluorescence generated in the course of amplification identifies which retroviruses are present, and the number of thermal cycles required for the intensity of each color to rise significantly above background provides an accurate measure of the number of copies of each retroviral sequence that were present originally in the sample. Fewer than 10 retroviral genomes can be detected. Moreover, 10 copies of a rare retrovirus can be detected in the presence of 100,000 copies of an abundant retrovirus. Ninety-six samples can be analyzed in 3 hr on a single plate, and the use of a closed-tube format eliminates crossover contamination. Utilizing previously well characterized clinical samples, we demonstrate that each of the pathogenic retroviruses can be identified correctly and no false positives occur. This assay enables the rapid and reliable screening of donated blood and transplantable tissues.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retroviruses can utilize a variety of cell-surface proteins for binding and entry into cells, and the cloning of several of these viral receptors has allowed refinement of models to explain retrovirus tropism. A single receptor appears to be necessary and sufficient for entry of many retroviruses, but exceptions to this simple model are accumulating. For example, HIV requires two proteins for cell entry, neither of which alone is sufficient; 10A1 murine leukemia virus can enter cells by using either of two distinct receptors; two retroviruses can use different receptors in some cells but use the same receptor for entry into other cells; and posttranslational protein modifications and secreted factors can dramatically influence virus entry. These findings greatly complicate the rules governing retrovirus tropism. The mechanism underlying retrovirus evolution to use many receptors for cell entry is not clear, although some evidence supports a mutational model for the evolution of new receptor specificities. Further study of factors that govern retrovirus entry into cells are important for achieving high-efficiency gene transduction to specific cells and for the design of retroviral vectors to target additional receptors for cell entry.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil, human T-lymphotropic virus type 2 (HTLV-2) is endemic in Amerindians and epidemic in intravenous drug users (IDUs). The long terminal repeat (LTR) is the most divergent genomic region of HTLV-2, therefore useful to characterize subtypes. Nucleotide sequence and restriction fragment length polymorphism (RFLP) analysis of LTR genomic segments of fourteen HTLV-2 strains isolated from HIV-infected patients of Londrina, Southern Brazil, were carried out. Molecular analysis disclosed that all HTLV-2 strains belonged to 2a subtype, and RFLP detected the presence of the a4, a5, and a6 subgroups according to Switzer's nomenclature. RFLP correlated with nucleotide sequence, and phylogenetic analysis clustered HTLV-2 sequences of IDUs into subgroups a5 and a6. HTLV-2 sequences from individuals of sexual risk factor clustered into the a4 subgroup. These results extend the knowledge of the genetic diversity of HTLV-2 circulating in Brazil and provide insights into HTLV-2 transmission and virus movement in this geographic area.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The prevalence of human T-cell lymphotropic viruses types 1 and 2 (HTLV-1/2) in Mozambique is not known. The present study examined blood samples from 208, 226, and 318 individuals from Northern, Central, and Southern Mozambique, respectively, of all socioeconomic and demographic strata attending public health centers in Mozambique for HTLV-1/2-specific antibodies. Serum samples were assessed for HIV- and HTLV-1/2-specific antibodies by using enzyme immunoassays, and infections with HTLV-1 and -2 were confirmed by using Western blot. An overall HTLV-1/2 prevalence of 2.3% (2.9% in female and 1.1% in male subjects) was observed, and the prevalence of infection increased with age. Regional variation in the prevalence of HIV and HTLV-1/2 was observed; 32.2%, 65.5%, and 44% of individuals tested HIV positive in Northern, Central, and Southern Mozambique, respectively, and 2.4%, 3.9%, and 0.9% tested HTLV-1/2 positive in the same regions. HTLV-1 infection was confirmed in these individuals. No association between HTLV-1 infection and socio-demographic variables or HIV status was detected, although the low number of HTLV-1-positive cases did not allow robust statistical analyses. The results obtained suggest different risk factors and epidemiologic correlates of HIV and HTLV-1 transmission in Mozambique. Furthermore, our results suggested that North and Central Mozambique should be considered endemic regions for HTLV-1 infection. As no cases of HTLV-2 were detected, HTLV-2 appears to have not been introduced into Mozambique.