972 resultados para Retinol binding protein
Resumo:
The objective of this study was to assess vitamin A status and association between acute diarrhoea and plasma levels of vitamin A through cross-sectional comparison in children. Plasma vitamin A was measured by colorimetric method of Neeld & Pearson and RBP by radial immunodiffusion technique. Seventy eight children (aged 18-119 months), 26 with current history of diarrhoea and 52 children as controls (outpatient from the Santa Casa de Misericórdia Hospital in metropolitan area of São Paulo City, Brazil) were studied. Children with history of diarrhoea showed significant low levels (mean ± s.e.) as compared to controls, vitamin A (15.87 ± 1.4 µg/dl vs. 21.14 ± 1.15 µg/dl, p < 0.007) and RBP (1.70 ± 0.2 mg/dl vs. 2.52 ±0.11 mg/dl). Multivariate logistic regression adjusted by sex, age, nutritional status and mother education revealed association between diarrhoea and inadequate levels of vitamin A and RBP.
Resumo:
Significant improvements have been noted in heart transplantation with the advent of cyclosporine. However, cyclosporine use is associated with significant side effects, such as chronic renal failure. We were interested in evaluating the incidence of long-term renal dysfunction in heart transplant recipients. Fifty-three heart transplant recipients were enrolled in the study. Forty-three patients completed the entire evaluation and follow-up. Glomerular (serum creatinine, creatinine clearance measured, and creatinine clearance calculated) and tubular functions (urinary retinol-binding protein, uRBP) were re-analyzed after 18 months. At the enrollment time, the prevalence of renal failure ranged from 37.7 to 54% according to criteria used to define it (serum creatinine > or = 1.5 mg/dL and creatinine clearance <60 mL/min). Mean serum creatinine was 1.61 ± 1.31 mg/dL (range 0.7 to 9.8 mg/dL) and calculated and measured creatinine clearances were 67.7 ± 25.9 and 61.18 ± 25.04 mL min-1 (1.73 m²)-1, respectively. Sixteen of the 43 patients who completed the follow-up (37.2%) had tubular dysfunction detected by increased levels of uRBP (median 1.06, 0.412-6.396 mg/dL). Eleven of the 16 patients (68.7%) with elevated uRBP had poorer renal function after 18 months of follow-up, compared with only eight of the 27 patients (29.6%) with normal uRBP (RR = 3.47, P = 0.0095). Interestingly, cyclosporine trough levels were not different between patients with or without tubular and glomerular dysfunction. Renal function impairment is common after heart transplantation. Tubular dysfunction, assessed by uRBP, correlates with a worsening of glomerular filtration and can be a useful tool for early detection of renal dysfunction.
Resumo:
Human transthyretin (TTR) is a homotetrameric protein involved in several amyloidoses. Zn(2+) enhances TTR aggregation in vitro, and is a component of ex vivo TTR amyloid fibrils. We report the first crystal structure of human TTR in complex with Zn(2+) at pH 4.6-7.5. All four structures reveal three tetra-coordinated Zn(2+)-binding sites (ZBS 1-3) per monomer, plus a fourth site (ZBS 4) involving amino acid residues from a symmetry-related tetramer that is not visible in solution by NMR.Zn(2+) binding perturbs loop E-alpha-helix-loop F, the region involved in holo-retinol-binding protein (holo-RBP) recognition, mainly at acidic pH; TTR affinity for holo-RBP decreases similar to 5-fold in the presence of Zn(2+). Interestingly, this same region is disrupted in the crystal structure of the amyloidogenic intermediate of TTR formed at acidic pH in the absence of Zn(2+). HNCO and HNCA experiments performed in solution at pH 7.5 revealed that upon Zn(2+) binding, although the alpha-helix persists, there are perturbations in the resonances of the residues that flank this region, suggesting an increase in structural flexibility. While stability of the monomer of TTR decreases in the presence of Zn(2+), which is consistent with the tertiary structural perturbation provoked by Zn(2+) binding, tetramer stability is only marginally affected by Zn(2+). These data highlight structural and functional roles of Zn(2+) in TTR-related amyloidoses, as well as in holo-RBP recognition and vitamin A homeostasis.
Resumo:
Transthyretin and retinal-binding protein are sensitive markers of acute protein-calorie malnutrition both for early diagnosis and dietary evaluation. A preliminary study showed that retinal-binding protein is the most sensitive marker of protein-calorie malnutrition in cirrhotic patients, even those with the mild form of the disease (Child A). However, in addition to being affected by protein-calorie malnutrition, the levels of these short half-life-liver-produced proteins are also influenced by other factors of a nutritional (zinc, tryptophan, vitamin A, etc) and non-nutritional (sex, aging, hormones, renal and liver functions and inflammatory activity) nature. These interactions were investigated in 11 adult male patients (49.9 ± 9.2 years of age) with alcoholic cirrhosis (Child-Pugh grade A) and with normal renal function. Both transthyretin and retinol binding protein were reduced below normal levels in 55% of the patients, in close agreement with their plasma levels of retinal. In 67% of the patients (4/6), the reduced levels of transthyretin and retinal-binding protein were caused by altered liver function and in 50% (3/6) they were caused by protein-calorie malnutrition. Thus, the present data, taken as a whole, indicate that reduced transthyretin and retinal-binding protein levels in mild cirrhosis of the liver are mainly due to liver failure and/or vitamin A status rather than representing an isolated protein-calorie malnutrition indicator.
Resumo:
Steatotic livers show increased hepatic damage and impaired regeneration after partial hepatectomy (PH) under ischemia/reperfusion (I/R), which is commonly applied in clinical practice to reduce bleeding. The known function of retinol-binding protein 4 (RBP4) is to transport retinol in the circulation. We examined whether modulating RBP4 and/or retinol could protect steatotic and nonsteatotic livers in the setting of PH under I/R. Steatotic and nonsteatotic livers from Zucker rats were subjected to PH (70%) with 60 minutes of ischemia. RBP4 and retinol levels were measured and altered pharmacologically, and their effects on hepatic damage and regeneration were studied after reperfusion. Decreased RBP4 levels were observed in both liver types, whereas retinol levels were reduced only in steatotic livers. RBP4 administration exacerbated the negative consequences of liver surgery with respect to damage and liver regeneration in both liver types. RBP4 affected the mobilization of retinol from steatotic livers, and this revealed actions of RBP4 independent of simple retinol transport. The injurious effects of RBP4 were not due to changes in retinol levels. Treatment with retinol was effective only for steatotic livers. Indeed, retinol increased hepatic injury and impaired liver regeneration in nonsteatotic livers. In steatotic livers, retinol reduced damage and improved regeneration after surgery. These benefits of retinol were associated with a reduced accumulation of hepatocellular fat. Thus, strategies based on modulating RBP4 could be ineffective and possibly even harmful in both liver types in the setting of PH under I/R. In terms of clinical applications, a retinol pretreatment might open new avenues for liver surgery that specifically benefit the steatotic liver. Liver Transpl 18:1198-1208, 2012. (c) 2012 AASLD.
Resumo:
The aim of this study was to investigate differences in concentrations of vitamin A, transthyretin (TTR) and retinol-binding protein (RBP) between plasma and cerebrospinal fluid (CSF) in dogs. RBP was detected using ELISA, and both RBP and TTR by Western blot analysis after separation on SDS-PAGE. Vitamin A was determined by high performance liquid chromatography. RBP and TTR as well as vitamin A were detected in all samples but at substantially lower concentrations in CSF compared to plasma. RBP in dog plasma showed a similar molecular mass to that of humans, whereas canine TTR had a lower molecular mass. Comparison between plasma and CSF showed that both RBP and TTR were of lower molecular mass in CSF. In CSF, RBP and retinol were present at 10-100-fold lower concentrations compared to plasma. Retinyl esters were present only in minute amounts in 5/17 samples. In conclusion, the CSF of dogs compared to humans is significantly different in terms of both quality and quantity of transport proteins for vitamin A.
Resumo:
AIMS/HYPOTHESIS: Retinol-binding protein 4 (RBP4) has recently been reported to be associated with insulin resistance and the metabolic syndrome. This study tested the hypothesis that RBP4 is a marker of insulin resistance and the metabolic syndrome in patients with type 2 diabetes or coronary artery disease (CAD) or in non-diabetic control subjects without CAD. METHODS: Serum RBP4 was measured in 365 men (126 with type 2 diabetes, 143 with CAD and 96 control subjects) and correlated with the homeostasis model assessment of insulin resistance index (HOMA-IR), components of the metabolic syndrome and lipoprotein metabolism. RBP4 was detected by ELISA and validated by quantitative Western blotting. RESULTS: RBP4 concentrations detected by ELISA were shown to be strongly associated with the results gained in quantitative Western blots. There were no associations of RBP4 with HOMA-IR or HbA(1c) in any of the groups studied. In patients with type 2 diabetes there were significant positive correlations of RBP4 with total cholesterol, LDL-cholesterol, VLDL-cholesterol, plasma triacylglycerol and hepatic lipase activity. In patients with CAD, there were significant associations of RBP4 with VLDL-cholesterol, plasma triacylglycerol and hepatic lipase activity, while non-diabetic control subjects without CAD showed positive correlations of RBP4 with VLDL-cholesterol and plasma triacylglycerol. CONCLUSIONS/INTERPRETATION: RBP4 does not seem to be a valuable marker for identification of the metabolic syndrome or insulin resistance in male patients with type 2 diabetes or CAD. Independent associations of RBP4 with pro-atherogenic lipoproteins and enzymes of lipoprotein metabolism indicate a possible role of RBP4 in lipid metabolism.
Resumo:
Two cellular retinol-binding proteins (CRBP I and II) with distinct tissue distributions and retinoid-binding properties have been recognized thus far in mammals. Here, we report the identification of a human retinol-binding protein resembling type I (55.6% identity) and type II (49.6% identity) CRBPs, but with a unique H residue in the retinoid-binding site and a distinctively different tissue distribution. Additionally, this binding protein (CRBP III) exhibits a remarkable sequence identity (62.2%) with the recently identified ι-crystallin/CRBP of the diurnal gecko Lygodactylus picturatus [Werten, P. J. L., Röll, B., van Alten, D. M. F. & de Jong, W. W. (2000) Proc. Natl. Acad. Sci. USA 97, 3282–3287 (First Published March 21, 2000; 10.1073/pnas.050500597)]. CRBP III and all-trans-retinol form a complex (Kd ≈ 60 nM), the absorption spectrum of which is characterized by the peculiar fine structure typical of the spectra of holo-CRBP I and II. As revealed by a 2.3-Å x-ray molecular model of apo-CRBP III, the amino acid residues that line the retinol-binding site in CRBP I and II are positioned nearly identically in the structure of CRBP III. At variance with the human CRBP I and II mRNAs, which are most abundant in ovary and intestine, respectively, the CRBP III mRNA is expressed at the highest levels in kidney and liver thus suggesting a prominent role for human CRBP III as an intracellular mediator of retinol metabolism in these tissues.
Resumo:
Presomitic and 3- to 12-somite pair cultured mouse embryos were deprived of retinoic acid (RA) by yolk-sac injections of antisense oligodeoxynucleotides for retinol binding protein (RBP). Inhibition of yolk-sac RBP synthesis was verified by immunohistochemistry, and the loss of activity of a lacZ-coupled RA-sensitive promoter demonstrated that embryos rapidly became RA-deficient. This deficiency resulted in malformations of the vitelline vessels, cranial neural tube, and eye, depending upon the stage of embryonic development at the time of antisense injection. Addition of RA to the culture medium at the time of antisense injection restored normal development implicating the role of RBP in embryonic RA synthesis. Furthermore, the induced RA deficiency resulted in early down-regulation of developmentally important genes including TGF-beta1 and Shh.
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
DUE TO COPYRIGHT RESTRICTIONS ONLY AVAILABLE FOR CONSULTATION AT ASTON UNIVERSITY LIBRARY AND INFORMATION SERVICES WITH PRIOR ARRANGEMENT
Resumo:
Transthyretin is an essential protein responsible for the transport of thyroid hormones and retinol in human serum and is also implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases, Here we report the solid phase synthesis of the monomeric unit of a transthyretin analog (equivalent to 127 amino acids) using t-Boc chemistry and peptide ligation and its folding to form a functional 54-kDa tetramer, The monomeric unit of the protein was chemically synthesized in three parts (positions 1-51, 54-99, and 102-127) and ligated using a chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of transthyretin's native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, transthyretin antibody recognition, and thyroid hormone binding. Other folding products included a high molecular weight aggregate as well as a transient dimeric species. This represents one of the largest macromolecules chemically synthesized to date and demonstrates the potential of protein chemical synthesis for investigations of protein-ligand interactions.
Resumo:
Transthyretin (TTR) is a 55 kDa protein responsible for the transport of thyroid hormones and retinol in human serum. Misfolded forms of the protein are implicated in the amyloid diseases familial amyloidotic polyneuropathy and senile systemic amyloidosis. Its folding properties and stabilization by ligands are of current interest due to their importance in understanding and combating these diseases. To assist in such studies we developed a method for the solid phase synthesis of the monomeric unit of a TTR analogue and its folding to form a functional 55 kDa tetramer. The monomeric unit of the protein was chemically synthesized in three parts, comprising amino acid residues 151, 5499 and 102127, and ligated using chemoselective thioether ligation chemistry. The synthetic protein was folded and assembled to a tetrameric structure in the presence of the TTRs native ligand, thyroxine, as shown by gel filtration chromatography, native gel electrophoresis, TTR antibody recognition and thyroid hormone binding. In the current study the solution structure of the first of these fragment peptides, TTR(151) is examined to determine its intrinsic propensity to form beta-sheet structure, potentially involved in amyloid fibril formation by TTR. Despite the presence of extensive beta-structure in the native form of the protein, the Nterminal fragment adopts an essentially random coil conformation in solution.
Resumo:
Traumatic brain injury (TBI) produces several cellular changes, such as gliosis, axonal and dendritic plasticity, and inhibition-excitation imbalance, as well as cell death, which can initiate epileptogenesis. It has been demonstrated that dysfunction of the inhibitory components of the cerebral cortex after injury may cause status epilepticus in experimental models; we proposed to analyze the response of cortical interneurons and astrocytes after TBI in humans. Twelve contusion samples were evaluated, identifying the expression of glial fibrillary acidic protein (GFAP) and calcium-binding proteins (CaBPs). The study was made in sectors with and without preserved cytoarchitecture evaluated with NeuN immunoreactivity (IR). In sectors with total loss of NeuN-IR the results showed a remarkable loss of CaBP-IR both in neuropil and somata. In sectors with conserved cytoarchitecture less drastic changes in CaBP-IR were detected. These changes include a decrease in the amount of parvalbumin (PV-IR) neurons in layer II, an increase of calbindin (CB-IR) neurons in layers III and V, and an increase in calretinin (CR-IR) neurons in layer II. We also observed glial fibrillary acidic protein immunoreactivity (GFAP-IR) in the white matter, in the gray-white matter transition, and around the sectors with NeuN-IR total loss. These findings may reflect dynamic activity as a consequence of the lesion that is associated with changes in the excitatory circuits of neighboring hyperactivated glutamatergic neurons, possibly due to the primary impact, or secondary events such as hypoxia-ischemia. Temporal evolution of these changes may be the substrate linking severe cortical contusion and the resulting epileptogenic activity observed in some patients.