967 resultados para Retinal Neovascularization


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To create a retinal neovascularization experimental model using intravitreal injection of microspheres loaded with latex-derived angiogenic fraction. Methods: Thirty-two albino New Zealand rabbits, divided in 4 groups of 8 animals, were enrolled in this study. Rabbits in groups I, II, and III received one intravitreal injection of PLGA (L-lactide-co-glycolide) microspheres with 10, 30, and 50 mu g of latex-derived angiogenic fraction into their right eyes, respectively, and group IV received 0.1 ml of microspheres without the angiogenic fraction. Weekly follow-up with ophthalmoscopy and fluorescein angiography was performed; the rabbits were sacrificed in the 4th week and their eyes processed for light microscopy. Results: All eyes from group I demonstrated increased retinal vascular tortuosity, observed from 14 days after injection and maintained for 28 days, otherwise without new vessels detection. All group II eyes showed vascular changes similar to group I. Fifty percent of the eyes from group II rabbits developed retinal neovascularization 21 days after injection. All eyes from group III demonstrated significant vascular tortuosity and retinal new vessels 2 weeks after injection, progressing to fibrovascular proliferation and tractional retinal detachment. No vascular changes or retinal new vessels were observed in group IV eyes. Light microscopy confirmed the existence of new vessels previously seen on fluorescein angiography, in retinal sections adjacent to the optic disc, not observed in sections at the same area in the control group. Conclusion: Thirty- and 50-mu g microspheres containing latex-derived angiogenic fraction injected into the vitreous cavity induced retinal neovascularization in rabbits.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Diseases characterized by retinal neovascularization are among the principal causes of visual loss worldwide. The hypoxia-stimulated expression of vascular endothelial growth factor (VEGF) has been implicated in the proliferation of new blood vessels. We have investigated the use of antisense phosphorothioate oligodeoxynucleotides against murine VEGF to inhibit retinal neovascularization and VEGF synthesis in a murine model of proliferative retinopathy. Intravitreal injections of two different antisense phosphorothioate oligodeoxynucleotides prior to the onset of proliferative retinopathy reduced new blood vessel growth a mean of 25 and 31% compared with controls. This inhibition was dependent on the concentration of antisense phosphorothioate oligodeoxynucleotides and resulted in a 40-66% reduction in the level of VEGF protein, as determined by Western blot analysis. Control (sense, nonspecific) phosphorothioate oligodeoxynucleotides did not cause a significant reduction in retinal neovascularization or VEGF protein levels. These data further establish a fundamental role for VEGF expression in ischemia-induced proliferative retinopathies and a potential therapeutic use for antisense phosphorothioate oligodeoxynucleotides.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The majority of severe visual loss in the United States results from complications associated with retinal neovascularization in patients with ischemic ocular diseases such as diabetic retinopathy, retinal vein occlusion, and retinopathy of prematurity. Intraocular expression of the angiogenic protein vascular endothelial growth factor (VEGF) is closely correlated with neovascularization in these human disorders and with ischemia-induced retinal neovascularization in mice. In this study, we evaluated whether in vivo inhibition of VEGF action could suppress retinal neovascularization in a murine model of ischemic retinopathy. VEGF-neutralizing chimeric proteins were constructed by joining the extracellular domain of either human (Flt) or mouse (Flk) high-affinity VEGF receptors with IgG. Control chimeric proteins that did not bind VEGF were also used. VEGF-receptor chimeric proteins eliminated in vitro retinal endothelial cell growth stimulation by either VEGF (P < 0.006) or hypoxic conditioned medium (P < 0.005) without affecting growth under nonstimulated conditions. Control proteins had no effect. To assess in vivo response, animals with bilateral retinal ischemia received intravitreal injections of VEGF antagonist in one eye and control protein in the contralateral eye. Retinal neovascularization was quantitated histologically by a masked protocol. Retinal neovascularization in the eye injected with human Flt or murine Flk chimeric protein was reduced in 100% (25/25; P < 0.0001) and 95% (21/22; P < 0.0001) 0.0001) of animals, respectively, compared to the control treated eye. This response was evident after only a single intravitreal injection and was dose dependent with suppression of neovascularization noted after total delivery of 200 ng of protein (P < 0.002). Reduction of histologically evident neovascular nuclei per 6-microns section averaged 47% +/- 4% (P < 0.001) and 37% +/- 2% (P < 0.001) for Flt and Flk chimeric proteins with maximal inhibitory effects of 77% and 66%, respectively. No retinal toxicity was observed by light microscopy. These data demonstrate VEGF's causal role in retinal angiogenesis and prove the potential of VEGF inhibition as a specific therapy for ischemic retinal disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: To determine the role of Indocyanin Green (ICG) angiography in localizing occult new vessels associated with age-related macular degeneration (ARMD) and assess the possibilities of ICG guided laser photocoagulations. PATIENTS AND METHODS: Fluorescein and ICG angiographies (IMAGEnet system) of 62 patients with occult new vessels (ONV), serous (SPED) or vascular (VPED) pigment epithelium detachment have been studied. RESULTS: Based on fondoscopic examination and fluorescein angiography, 43 eyes (69%) disclosed ONV, 8 (13%) SPED and 11 (18%) VPED. Choroidal neovascularisation was confirmed by ICG angiography in 37 ONV cases (86%), in 8 (72%) VPED cases, but in no SPED. Conversion of ONV in classical neovascular membranes was possible in 19 ONV cases (44%) and in 6 (54%) VPED cases, making a laser photocoagulation possible in 9 eyes (36%). CONCLUSION: ICG angiography plays an important role in the evaluation, classification and laser treatment of patients with ONV secondary to ARMD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The efficacy of an antisense oligonucleotide (ODN17) cationic nanoemulsion directed at VEGF-R2 to reduce neovascularization was evaluated using rat corneal neovascularization and retinopathy of prematurity (ROP) mouse models. Application of saline solution or scrambled ODN17 solution on eyes of rats led to the highest extent of corneal neovascularization. The groups treated with blank nanoemulsion or scrambled ODN17 nanoemulsion showed moderate inhibition in corneal neovascularization with no significant difference with the saline and scrambled ODN17 control solution groups, while the groups treated with ODN17 solution or Avastin® (positive ODN17 control) clearly elicited marked significant inhibition in corneal neovascularization confirming the results reported in the literature. The highest significant corneal neovascularization inhibition efficiency was noted in the groups treated with ODN17 nanoemulsion (topical and subconjunctivally). However, in the ROP mouse model, the ODN17 in PBS induced a 34% inhibition of retinal neovascularization when compared to the aqueous-vehicle-injected eyes. A significantly higher inhibition of vitreal neovascularization (64%) was observed in the group of eyes treated with ODN17 nanoemulsion. No difference in extent of neovascularization was observed between blank nanoemulsion, scrambled ODN17 nanoemulsion, vehicle or non-treated eyes. The overall results indicate that cationic nanoemulsion can be considered a promising potential ocular delivery system and an effective therapeutic tool of high clinical significance in the prevention and forthcoming treatment of ocular neovascular diseases.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Corticosteroids are hormones involved in many physiological responses such as stress, immune modulation, protein catabolism and water homeostasis. The subfamily of glucocorticoids is used systemically in the treatment of inflammatory diseases or allergic reactions. In the eye, glucocorticoides are used to treat macular edema, inflammation and neovascularization. The most commonly used glucocorticoid is triamcinolone acetonide (TA). The pharmaceutical formulation of TA is not adapted for intravitreal administration but has been selected by ophthalmologists because its very low intraocular solubility provides sustained effect. Visual benefits of intraocular TA do not clearly correlate with morpho-anatomical improvements, suggesting potential toxicity. We therefore studied, non-common, but deleterious effects of glucocorticoids on the retina. We found that the intravitreal administration of TA is beneficial in the treatment of neovascularization because it triggers cell death of endothelial cells of neovessels by a caspase-independent mechanism. However, this treatment is toxic for the retina because it induces a non-apoptotic, caspase-independent cell death related to paraptosis, mostly in the retinal pigmented epithelium cells and the Müller cells.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE. Vascular endothelial growth factor (VEGF) is an important signal protein in vertebrate nervous development, promoting neurogenesis, neuronal patterning, and glial cell growth. Bevacizumab, an anti-VEGF agent, has been extensively used for controlling pathological retinal neovascularization in adult and newborn patients, although its effect on the developing retina remains largely unknown. The purpose of this study was to investigate the effect of bevacizumab on cell death, proliferation, and differentiation in newborn rat retina. METHODS. Retinal explants of sixty 2-day-old Lister hooded rats were obtained after eye enucleation and maintained in culture media with or without bevacizumab for 2 days. Immunohistochemical staining was assessed against proliferating cell nuclear antigen (PCNA, to detect cell proliferation); caspase-3 and beclin-1 (to investigate cell death); and vimentin and glial fibrillary acidic protein (GFAP, markers of glial cells). Gene expressions were quantified by real-time reverse-transcription polymerase chain reaction. Results from treatment and control groups were compared. RESULTS. No significant difference in the staining intensity (on immunohistochemistry) of PCNA, caspase-3, beclin-1, and GFAP, or in the levels of PCNA, caspase-3, beclin-1, and vimentin mRNA was observed between the groups. However, a significant increase in vimentin levels and a significant decrease in GFAP mRNA expression were observed in bevacizumab-treated retinal explants compared with controls. CONCLUSIONS. Bevacizumab did not affect cell death or proliferation in early developing rat retina but appeared to interfere with glial cell maturation by increasing vimentin levels and downregulating GFAP gene expression. Thus, we suggest anti-VEGF agents be used with caution in developing retinal tissue. (Invest Ophthalmol Vis Sci. 2012;53:7904-7911) DOI:10.1167/iovs.12-10283

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: To define the molecular pharmacology underlying the antiangiogenic effects of nonpeptide imidazolidine-2,4-dione somatostatin receptor agonists (NISAs) and evaluate the efficacy of NISA in ocular versus systemic delivery routes in ocular disease models. METHODS: Functional inhibitory effects of the NISAs and the somatostatin peptide analogue octreotide were evaluated in vitro by chemotaxis, proliferation, and tube-formation assays. The oxygen-induced retinopathy (OIR) model and the laser model of choroidal neovascularization (CNV) were used to test the in vivo efficacy of NISAs. Transscleral permeability of a candidate NISA was also measured. RESULTS: NISAs inhibited growth factor-induced HREC proliferation, migration and tube formation with submicromolar potencies (IC(50), 0.1-1.0 microM) comparable to octreotide. In the OIR model, systemic administration of the NISAs RFE-007 and RFE-011 inhibited retinal neovascularization in a dose-dependent manner, comparable to octreotide. In the CNV model, intravitreal RFE-011 resulted in a 56% reduction (P < 0.01) in CNV lesion area, whereas systemic administration resulted in a 35% reduction (P < 0.05) in lesion area. RFE-011 demonstrated transscleral penetration. CONCLUSIONS: Micromolar concentrations of octreotide and NISAs are necessary for antiangiogenic effects, whereas nanomolar concentrations are effective for endocrine inhibition. This suggests that the antiangiogenic activity of NISAs and octreotide is mediated by an overall much less efficient downstream coupling mechanism than is growth hormone release. As a result, the intravitreal or transscleral route of administration should be seriously considered for future clinical studies of SSTR2 agonists used for treatment of ocular neovascularization to ensure efficacious concentrations in the target retinal and choroidal tissue.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

BACKGROUND/AIMS: Proliferative diabetic retinopathy is characterized by the formation of retinal neovascularization. Angiopoietin-2 (Ang-2) and matrix metalloproteinase (MMP) play a critical role in angiogenesis. However, the precise location and function of Ang-2 during formation of retinal neovascularizations driven by hypoxia in relation to MMP activity have not been elucidated. In this study, we investigated the response of Ang-2 heterozygous knockout retinas (Ang2(+/-) mouse) to hypoxia and its link to MMP activity in an oxygen-induced retinopathy (OIR) model. METHODS: Pre-retinal neovascularizations were quantitated in vertical sections. Intra-retinal angiogenesis was assessed by whole mount immunofluorescence staining of retinas. MMP activity was examined in retinal protein lysate and whole mount retinal in situ zymography. RESULTS: Ang2(+/-) retinas subjected to the OIR model showed 33% reduced neovascularization and 271% increased avascular zones at postnatal day 17. In the OIR model, Ang-2 was modestly expressed in pre-retinal neovascularizations and venules, but strongly in arterioles and capillary sprouts. MMPs were activated in close association to where Ang-2 is expressed. MMP activity was substantially decreased in Ang2(+/-) retinas. CONCLUSIONS: Our present data suggest the spatially concomitant expression of Ang2 and MMPs, and that Ang2 modulates hypoxia-induced neovascularization by regulating MMP activity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Retinopathy of prematurity is a blinding disease, initiated by lack of retinal vascular growth after premature birth. We show that lack of insulin-like growth factor I (IGF-I) in knockout mice prevents normal retinal vascular growth, despite the presence of vascular endothelial growth factor, important to vessel development. In vitro, low levels of IGF-I prevent vascular endothelial growth factor-induced activation of protein kinase B (Akt), a kinase critical for endothelial cell survival. Our results from studies in premature infants suggest that if the IGF-I level is sufficient after birth, normal vessel development occurs and retinopathy of prematurity does not develop. When IGF-I is persistently low, vessels cease to grow, maturing avascular retina becomes hypoxic and vascular endothelial growth factor accumulates in the vitreous. As IGF-I increases to a critical level, retinal neovascularization is triggered. These data indicate that serum IGF-I levels in premature infants can predict which infants will develop retinopathy of prematurity and further suggests that early restoration of IGF-I in premature infants to normal levels could prevent this disease.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Ocular neovascularisation is the leading cause of blindness in developed countries and the most potent angiogenic factor associated with neovascularisation is vascular endothelial growth factor (VEGF). We have previously described a sense oligonucleotide (ODN-1) that possesses anti-human and rat VEGF activity. This paper describes the synthesis of lipid-lysine dendrimers and their subsequent ability to delivery ODN-1 to its target and mediate a reduction in VEGF concentration both in vitro and in vivo. Positively charged dendrimers were used to deliver ODN-1 into the nucleus of cultured D407 cells. The effects on VEGF mRNA transcription and protein expression were analysed using RT-PCR and ELISA, respectively. The most effective dendrimers in vitro were further investigated in vivo using an animal model of choroidal neovascularisation (CNV). All dendrimer/ODN-1 complexes mediated in a significant reduction in VEGF expression during an initial 24 hr period (40-60%). Several complexes maintained this level of VEGF reduction during a subsequent, second 24 hr period, which indicated protection of ODN-1 from the effects of endogenous nucleases. In addition, the transfection efficiency of dendrimers that possessed 8 positive charges (chi = 81(.)51%) was significantly better (P = 0(.)0036) than those that possessed 4 positive charges (chi = 56(.)8%). RT-PCR revealed a correlation between levels of VEGF protein mRNA. These results indicated that the most effective structural combination was three branched chains of intermediate length with 8 positive charges such as that found for dendrimer 4. Dendrimer 4 and 7/ODN-1 complexes were subsequently chosen for in vivo analysis. Fluorescein angiography demonstrated that both dendrimers significantly (P < 0(.)0001) reduced the severity of laser mediated CNV for up to two months post-injection. This study demonstrated that lipophilic, charged dendrimer mediated delivery of ODN-1 resulted in the down-regulation of in vitro VEGF expression. In addition, in vivo delivery of ODN-1 by two of the dendrimers resulted in significant inhibition of CNV in an inducible rat model. Time course studies showed that the dendrimer/ODN-1 complexes remained active for up to two months indicating the dendrimer compounds provided protection against the effects of nucleases. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Sickle cell retinopathy (SCR) develops in up to 30% of sickle cell disease patients (SCD) during the second decade of life. Treatment for this affection remains palliative, so studies on its pathophysiology may contribute to the future development of novel therapies. SCR is more frequently observed in hemoglobin SC disease and derives from vaso-occlusion in the microvasculature of the retina leading to neovascularization and, eventually, to blindness. Circulating inflammatory cytokines, angiogenic factors, and their interaction may contribute to the pathophysiology of this complication. Angiopoietin (Ang)-1, Ang-2, soluble vascular cell adhesion molecule-1, intercellular adhesion molecule (ICAM)-1, E-selectin, P-selectin, IL1-β, TNF-α, pigment epithelium derived factor (PEDF) and vascular endothelial growth factor plasmatic levels were determined in 37 SCD patients with retinopathy, 34 without retinopathy, and healthy controls. We observed that sICAM-1 is significantly decreased, whereas PEDF is elevated in HbSC patients with retinopathy (P=0.012 and P=0.031, respectively). Ang-1, Ang-2 and IL1-β levels were elevated in SCD patients (P=0.001, P<0.001 and P=0.001, respectively), compared to controls, and HbSS patients presented higher levels of Ang-2 compared to HbSC (P<0.001). Our study supports the possible influence of sICAM-1 and PEDF on the pathophysiology of retinal neovascularization in SCD patients.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To describe the presence of iris neovascularization in a rabbit-model of retinal neovascularization induced by the intravitreal injection of latex-derived angiogenic fraction microspheres (LAF). Materials and Methods: Eight New Zealand rabbits received one intravitreal injection of PLGA (L-lactide-coglycolide) microspheres with 50 ug of LAF in the right eye (Group A). Microspheres without the LAF (0.1 ml) were injected in controls (Group B; n = 8). Follow-up with clinical evaluation and iris fluorescein angiography was performed after 4 weeks when eyes were processed for light microscopy. Results: All eyes from Group A showed significant vascular dilation, conjunctival hyperemia and neovascularization on the iris surface, after LAF injection. No vascular changes were observed in Group B. Conclusions: The intravitreal injection of microspheres containing the LAF can induce rubeosis iridis in rabbits and could be used as a simple experimental model for iris neovascularization.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purpose: To evaluate the effects of panretinal photocoagulation (PRP) compared with PRP plus intravitreal bevacizumab on best corrected visual acuity (BCVA) and total area of fluorescein leakage from active new vessels (NVs) in patients with high-risk proliferative diabetic retinopathy (PDR). Methods: We carried out a prospective study of patients with high-risk PDR and no prior laser treatment who were randomly assigned to receive PRP (PRP group) or PRP plus intravitreal injection of 1.5 mg of bevacizumab (PRP-plus group). In all patients, the PRP was administered at two time-points (weeks 1 and 3), with the intravitreal bevacizumab delivered at the end of the second laser episode in the PRP-plus group. Standardized ophthalmic evaluation including Early Treatment Diabetic Retinopathy Study BCVA as well as stereoscopic fundus photography and fluorescein angiography were performed at baseline and at weeks 4, 9 (+/- 1) and 16 (+/- 2). Main outcome measures included changes in BCVA and in total area of fluorescein leakage from active NVs. Results: Twenty-two (n = 30 eyes) consecutive patients completed the 16-week follow-up. There was no significant difference between the PRP and PRP-plus groups with respect to age, gender, type or duration of diabetes, area of fluorescein leakage from active NVs or BCVA. No significant difference in BCVA was observed between the groups throughout the study period. However, the total area of actively leaking NVs was significantly reduced in the PRP-plus group compared with the PRP group at weeks 4, 9 and 16 (p < 0.001). No major adverse events were identified. Conclusions: In the short-term, the adjunctive use of intravitreal bevacizumab with PRP was associated with a greater reduction in the area of active leaking NVs than PRP alone in patients with high-risk PDR.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Retinopathy of prematurity (ROP) is a major cause of visual impairment in premature infants. It is characterized by an arrest in normal retinal vascular development associated with microvascular degeneration, followed by an abnormal hypoxiainduced neovascularization. Recent studies point out that ROP is a multifactorial disease, implicating both oxygen-dependent and oxygen-independent mechanisms. Oxygen-dependent factors leading to microvascular degeneration include generation of reactive oxygen species and suppression of specific oxygen-regulated vascular survival factors, such as vascular endothelial growth factor (VEGF) and erythropoietin. The other major mechanism for the initial capillary loss is oxygen-independent and implicates a deficit in growth factor IGF-1/IGFBP3. The proliferative, second phase of ROP is triggered by increases in vascular growth factors concentrations, in an attempt to compensate for the hypoxic retina. Novel signaling pathways for vascular repair, implicating both metabolite signaling and inflammatory lipids signaling, represent new therapeutic avenues for ROP.