899 resultados para Retention curve


Relevância:

100.00% 100.00%

Publicador:

Resumo:

ABSTRACT High cost and long time required to determine a retention curve by the conventional methods of the Richards Chamber and Haines Funnel limit its use; therefore, alternative methods to facilitate this routine are needed. The filter paper method to determine the soil water retention curve was evaluated and compared to the conventional method. Undisturbed samples were collected from five different soils. Using a Haines Funnel and Richards Chamber, moisture content was obtained for tensions of 2; 4; 6; 8; 10; 33; 100; 300; 700; and 1,500 kPa. In the filter paper test, the soil matric potential was obtained from the filter-paper calibration equation, and the moisture subsequently determined based on the gravimetric difference. The van Genuchten model was fitted to the observed data of soil matric potential versus moisture. Moisture values of the conventional and the filter paper methods, estimated by the van Genuchten model, were compared. The filter paper method, with R2 of 0.99, can be used to determine water retention curves of agricultural soils as an alternative to the conventional method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The water retention curve (WRC) is a hydraulic characteristic of concrete required for advanced modeling of water (and thus solute) transport in variably saturated, heterogeneous concrete. Unfortunately, determination by a direct experimental method (for example, measuring equilibrium moisture levels of large samples stored in constant humidity cells) is a lengthy process, taking over 2 years for large samples. A surrogate approach is presented in which the WRC is conveniently estimated from mercury intrusion porosimetry (MIP) and validated by water sorption isotherms: The well-known Barrett, Joyner and Halenda (BJH) method of estimating the pore size distribution (PSD) from the water sorption isotherm is shown to complement the PSD derived from conventional MIP. This provides a basis for predicting the complete WRC from MIP data alone. The van Genuchten equation is used to model the combined water sorption and MIP results. It is a convenient tool for describing water retention characteristics over the full moisture content range. The van Genuchten parameter estimation based solely on MIP is shown to give a satisfactory approximation to the WRC, with a simple restriction on one. of the parameters.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Some peculiarities of water retention in a tropical lateritic soil of clayey nature are presented and discussed. The typical soil microstructure is shown through thin-layer plates emphasizing soil microaggregation and pore distribution and their repercussion on the soil-water retention curve and on hysteresis. It is shown that the clayey soil has a behavior that to a large extent resembles sandy soil, which is characterized by the relatively high saturated hydraulic conductivity, low air-entry value, and small suction range at which water drainage takes place. The severe weathering processes that originated this soil have produced an altered soil that seems to be homogeneous in terms of physical indices, hydraulic conductivity, and soil-water retention characteristics, up to 4.5 m in depth.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Dispersed information on water retention and availability in soils may be compiled in databases to generate pedotransfer functions. The objectives of this study were: to generate pedotransfer functions to estimate soil water retention based on easily measurable soil properties; to evaluate the efficiency of existing pedotransfer functions for different geographical regions for the estimation of water retention in soils of Rio Grande do Sul (RS); and to estimate plant-available water capacity based on soil particle-size distribution. Two databases were set up for soil properties, including water retention: one based on literature data (725 entries) and the other with soil data from an irrigation scheduling and management system (239 entries). From the literature database, pedotransfer functions were generated, nine pedofunctions available in the literature were evaluated and the plant-available water capacity was calculated. The coefficient of determination of some pedotransfer functions ranged from 0.56 to 0.66. Pedotransfer functions generated based on soils from other regions were not appropriate for estimating the water retention for RS soils. The plant-available water content varied with soil texture classes, from 0.089 kg kg-1 for the sand class to 0.191 kg kg-1 for the silty clay class. These variations were more related to sand and silt than to clay content. The soils with a greater silt/clay ratio, which were less weathered and with a greater quantity of smectite clay minerals, had high water retention and plant-available water capacity.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Pedotransfer functions (PTF) were developed to estimate the parameters (α, n, θr and θs) of the van Genuchten model (1980) to describe soil water retention curves. The data came from various sources, mainly from studies conducted by universities in Northeast Brazil, by the Brazilian Agricultural Research Corporation (Embrapa) and by a corporation for the development of the São Francisco and Parnaíba river basins (Codevasf), totaling 786 retention curves, which were divided into two data sets: 85 % for the development of PTFs, and 15 % for testing and validation, considered independent data. Aside from the development of general PTFs for all soils together, specific PTFs were developed for the soil classes Ultisols, Oxisols, Entisols, and Alfisols by multiple regression techniques, using a stepwise procedure (forward and backward) to select the best predictors. Two types of PTFs were developed: the first included all predictors (soil density, proportions of sand, silt, clay, and organic matter), and the second only the proportions of sand, silt and clay. The evaluation of adequacy of the PTFs was based on the correlation coefficient (R) and Willmott index (d). To evaluate the PTF for the moisture content at specific pressure heads, we used the root mean square error (RMSE). The PTF-predicted retention curve is relatively poor, except for the residual water content. The inclusion of organic matter as a PTF predictor improved the prediction of parameter a of van Genuchten. The performance of soil-class-specific PTFs was not better than of the general PTF. Except for the water content of saturated soil estimated by particle size distribution, the tested models for water content prediction at specific pressure heads proved satisfactory. Predictions of water content at pressure heads more negative than -0.6 m, using a PTF considering particle size distribution, are only slightly lower than those obtained by PTFs including bulk density and organic matter content.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Knowledge of the soil water retention curve (SWRC) is essential for understanding and modeling hydraulic processes in the soil. However, direct determination of the SWRC is time consuming and costly. In addition, it requires a large number of samples, due to the high spatial and temporal variability of soil hydraulic properties. An alternative is the use of models, called pedotransfer functions (PTFs), which estimate the SWRC from easy-to-measure properties. The aim of this paper was to test the accuracy of 16 point or parametric PTFs reported in the literature on different soils from the south and southeast of the State of Pará, Brazil. The PTFs tested were proposed by Pidgeon (1972), Lal (1979), Aina & Periaswamy (1985), Arruda et al. (1987), Dijkerman (1988), Vereecken et al. (1989), Batjes (1996), van den Berg et al. (1997), Tomasella et al. (2000), Hodnett & Tomasella (2002), Oliveira et al. (2002), and Barros (2010). We used a database that includes soil texture (sand, silt, and clay), bulk density, soil organic carbon, soil pH, cation exchange capacity, and the SWRC. Most of the PTFs tested did not show good performance in estimating the SWRC. The parametric PTFs, however, performed better than the point PTFs in assessing the SWRC in the tested region. Among the parametric PTFs, those proposed by Tomasella et al. (2000) achieved the best accuracy in estimating the empirical parameters of the van Genuchten (1980) model, especially when tested in the top soil layer.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Leaching is disadvantageous, both for economical and environmental reasons since it may decrease the ecosystem productivity and may also contribute to the contamination of surface and ground water. The objective of this paper was to quantify the loss of nitrogen and sulfur by leaching, at the depth of 0.9 m, in an Ultisol in Sao Paulo State (Brazil) with high permeability, Cultivated with sugarcane during the agricultural cycle of crop plant. The following ions were evaluated: nitrite, nitrate, ammonium, and sulfate. Calcium, magnesium, potassium, and phosphate were also evaluated at the same depth. The sugarcane was planted and fertilized in the furrows with 120 log ha(-1) of N-urea. In order to find out the fate of N-fertilizer, four microplots with (15)N-enriched fertilizer were installed. Input and output of the considered ions at the depth of 0.9 m were quantified from the flux density of water and the concentration of the elements in the soil solution at this soil depth: tensiometers, soil water retention curve and soil solution extractors were used for this quantification. The internal drainage was 205 mm of water, with a total loss of 18 kg ha(-1) of N and 10 kg ha(-1) of S. The percentage of N in the soil solution derived from the fertilizer (%NSSDF) was 1.34, resulting in only 25 g ha(-1) of N fertilizer loss by leaching during all agricultural cycle. Under the experimental conditions of this crop plant, that is, high demand of nutrients and high incorporation of crop residues, the leached N represented 15% of applied N and S leaching were not considerable; the higher amount of leached N was native nitrogen and a minor quantity from N fertilizer; and the leached amount of Ca, Mg, K and P did not exceed the applications performed in the crop by lime and fertilization. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Nielsen and Perrochet [Adv. Water Resour. 23 (2000) 503] presented experimental data for cyclic water movement in the vadose zone above an oscillating watertable. The response of the watertable to cyclic forcing was characterised by the ratios of the forcing head to watertable amplitudes and their associated phase lag. They found that their non-hysteretic Richards' equation model failed to represent the observed behaviour of these parameters. This paper explores the effect on the simulated capillary fringe dynamics (in terms of these parameters) of including varying degrees of hysteresis in the moisture retention curve used in a numerical model of their experiment. It is clear that hysteresis can indeed account for observed discrepancies between simulation and experiment and that the effect of hysteresis varies with the frequency of oscillation. The use of a single-valued mean retention curve, as advocated by some authors, fails to provide a match between the simulated and observed behaviour of the Nielsen and Perrochet parameters, but is shown to be adequate for predicting time-averaged soil moisture profiles. (C) 2003 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A partir de uma análise detalhada do processo de infiltração de água no solo, foram propostas alternativas para adequação dos parâmetros de entrada do modelo de Green-Ampt-Mein-Larson (GAML), na tentativa de melhorar a eficiência da estimativa da infiltração em alguns solos brasileiros. As adequações consistiram em substituir a condutividade hidráulica do solo saturado (K0) pela taxa de infiltração estável (Tie) e o teor de água do solo saturado (qs) pelo teor de água na zona de transmissão (qw), além de estabelecer uma equação para estimativa do potencial matricial na frente de umedecimento (yf) com base nos parâmetros do modelo de curva de retenção de água de Brooks & Corey. Avaliou-se o desempenho do conjunto de adequações propostas (GAML-t) para estimativa da infiltração de água em três solos: Latossolo Vermelho-Amarelo, Latossolo Vermelho e Argissolo Vermelho. O desempenho do GAML-t foi comparado com o obtido pelo GAML aplicado em sua forma original e adequado segundo cinco diferentes formas, evidenciando-se que o primeiro obteve melhor desempenho nos três solos estudados.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Water movement in unsaturated soils gives rise to measurable electrical potential differences that are related to the flow direction and volumetric fluxes, as well as to the soil properties themselves. Laboratory and field data suggest that these so-called streaming potentials may be several orders of magnitudes larger than theoretical predictions that only consider the influence of the relative permeability and electrical conductivity on the self potential (SP) data. Recent work has improved predictions somewhat by considering how the volumetric excess charge in the pore space scales with the inverse of water saturation. We present a new theoretical approach that uses the flux-averaged excess charge, not the volumetric excess charge, to predict streaming potentials. We present relationships for how this effective excess charge varies with water saturation for typical soil properties using either the water retention or the relative permeability function. We find large differences between soil types and the predictions based on the relative permeability function display the best agreement with field data. The new relationships better explain laboratory data than previous work and allow us to predict the recorded magnitudes of the streaming potentials following a rainfall event in sandy loam, whereas previous models predict values that are three orders of magnitude too small. We suggest that the strong signals in unsaturated media can be used to gain information about fluxes (including very small ones related to film flow), but also to constrain the relative permeability function, the water retention curve, and the relative electrical conductivity function.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Soil tillage promotes changes in soil structure. The magnitude of the changes varies with the nature of the soil, tillage system and soil water content and decreases over time after tillage. The objective of this study was to evaluate short-term (one year period) and long-term (nine year period) effects of soil tillage and nutrient sources on some physical properties of a very clayey Hapludox. Five tillage systems were evaluated: no-till (NT), chisel plow + one secondary disking (CP), primary + two (secondary) diskings (CT), CT with burning of crop residues (CTb), and CT with removal of crop residues from the field (CTr), in combination with five nutrient sources: control without nutrient application (C); mineral fertilizers, according to technical recommendations for each crop (MF); 5 Mg ha-1 yr-1 of poultry litter (wetmatter) (PL); 60 m³ ha-1 yr-1 of cattle slurry (CS) and; 40 m³ ha-1 yr-1 of swine slurry (SS). Bulk density (BD), total porosity (TP), and parameters related to the water retention curve (macroporosity, mesoporosity and microporosity) were determined after nine years and at five sampling dates during the tenth year of the experiment. Soil physical properties were tillage and time-dependent. Tilled treatments increased total porosity and macroporosity, and reduced bulk density in the surface layer (0.00-0.05 m), but this effect decreased over time after tillage operations due to natural soil reconsolidation, since no external stress was applied in this period. Changes in pore size distribution were more pronounced in larger and medium pore diameter classes. The bulk density was greatest in intermediate layers in all tillage treatments (0.05-0.10 and 0.12-0.17 m) and decreased down to the deepest layer (0.27-0.32 m), indicating a more compacted layer around 0.05-0.20 m. Nutrient sources did not significantly affect soil physical and hydraulic properties studied.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different management systems tend to modify soil structure and porosity over the years. The aim of this study was to study modifications in the morphostructure and porosity of dystroferric Red Latosol (Oxisol) under conventional tillage and no-tillage over a 31- year period. The study began with the description of soil profiles based on the cropping profile method, to identify the most compact structures, define sample collection points for physical and chemical analysis, and determine the water retention curve. A forest soil profile was described and used as reference. The results showed that, under conventional tillage, the microaggregate structure of the Oxisol was fragmented between 0 and 0.20 m, and compact (bulk density = 1.52 Mg m-3) in the sub-surface layer between 0.20 and 0.50 m. Under no-tillage, the structure became compacted (bulk density = 1.40 Mg m-3) between 0 and 0.60 m, but contained fissures and biopores. The volume of the class with a pore diameter of > 100 µm under no-tillage was limited, but practically non-existent in the conventional management system. On the other hand, the classes with a pore diameter of < 100 µm were not affected by the type of soil management system.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A method for determining soil hydraulic properties of a weathered tropical soil (Oxisol) using a medium-sized column with undisturbed soil is presented. The method was used to determine fitting parameters of the water retention curve and hydraulic conductivity functions of a soil column in support of a pesticide leaching study. The soil column was extracted from a continuously-used research plot in Central Oahu (Hawaii, USA) and its internal structure was examined by computed tomography. The experiment was based on tension infiltration into the soil column with free outflow at the lower end. Water flow through the soil core was mathematically modeled using a computer code that numerically solves the one-dimensional Richards equation. Measured soil hydraulic parameters were used for direct simulation, and the retention and soil hydraulic parameters were estimated by inverse modeling. The inverse modeling produced very good agreement between model outputs and measured flux and pressure head data for the relatively homogeneous column. The moisture content at a given pressure from the retention curve measured directly in small soil samples was lower than that obtained through parameter optimization based on experiments using a medium-sized undisturbed soil column.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Studies of soil-water dynamics using toposequences are essential to improve the understanding of soil-water-vegetation relationships. This study assessed the hydro-physical and morphological characteristics of soils of Atlantic Rainforest in the Parque Estadual de Carlos Botelho, state of São Paulo, Brazil. The study area of 10.24 ha (320 x 320 m) was covered by dense tropical rainforest (Atlantic Rainforest). Based on soil maps and topographic maps of the area, a representative transect of the soil in this plot was chosen and five soil trenches were opened to determine morphological properties. To evaluate the soil hydro-physical functioning, soil particle size distribution, bulk density (r), particle density (r s), soil water retention curves (SWRC), field saturated hydraulic conductivity (Ks), macroporosity (macro), and microporosity (micro) and total porosity (TP) were determined. Undisturbed samples were collected for micromorphometric image analysis, to determine pore size, shape, and connectivity. The soils in the study area were predominantly Inceptisols, and secondly Entisols and Epiaquic Haplustult. In the soil hydro-physical characterization of the selected transect, a change was observed in Ks between the surface and subsurface layers, from high/intermediate to intermediate/low permeability. This variation in soil-water dynamics was also observed in the SWRC, with higher water retention in the subsurface horizons. The soil hydro-physical behavior was influenced by the morphogenetic characteristics of the soils.