3 resultados para Restratification
Resumo:
Recent realistic high resolution modeling studies show a net increase of submesoscale activity in fall and winter when the mixed layer depth is at its maximum. This submesoscale activity increase is associated with a reduced deepening of the mixed layer. Both phenomena can be related to the development of mixed layer instabilities, which convert available potential energy into submesoscale eddy kinetic energy and contribute to a fast restratification by slumping the horizontal density gradient in the mixed layer. In the present work, the mixed layer formation and restratification was studied by uniformly cooling a fully turbulent zonal jet in a periodic channel at different resolutions, from eddy resolving (10 km) to submesoscale permitting (2 km). The effect of the submesoscale activity, highlighted by these different horizontal resolutions, was quantified in terms of mixed layer depth, restratification rate and buoyancy fluxes. Contrary to many idealized studies focusing on the restratification phase only, this study addresses a continuous event of mixed layer formation followed by its complete restratification. The robustness of the present results was established by ensemble simulations. The results show that, at higher resolution, when submesoscale starts to be resolved, the mixed layer formed during the surface cooling is significantly shallower and the total restratification almost three times faster. Such differences between coarse and fine resolution models are consistent with the submesoscale upward buoyancy flux, which balances the convection during the formation phase and accelerates the restratification once the surface cooling is stopped. This submesoscale buoyancy flux is active even below the mixed layer. Our simulations show that mesoscale dynamics also cause restratification, but on longer time scales. Finally, the spatial distribution of the mixed layer depth is highly heterogeneous in the presence of submesoscale activity, prompting the question of whether it is possible to parameterize submesoscale effects and their effects on the marine biology as a function of a spatially-averaged mixed layer depth.
Resumo:
[EN] We describe the coupling between upper ocean layer variability and size-fractionated phytoplankton distribution in the non-nutrient-limited Bransfield Strait region (BS) of Antarctica. For this purpose we use hydrographic and size-fractionated chlorophyll a data from a transect that crossed 2 fronts and an eddy, together with data from 3 stations located in a deeply mixed region, the Antarctic Sound (AS). In the BS transect, small phytoplankton (<20 μm equivalent spherical diameter [ESD]) accounted for 80% of total chl a and their distribution appeared to be linked to cross-frontal variability. On the deepening upper mixed layer (UML) sides of both fronts we observed a deep subducting column-like structure of small phytoplankton biomass. On the shoaling UML sides of both fronts, where there were signs of restratification, we observed a local shallow maximum of small phytoplankton biomass. We propose that this observed phytoplankton distribution may be a response to the development of frontal vertical circulation cells. In the deep, turbulent environment of the AS, larger phytoplankton (>20 μm ESD) accounted for 80% of total chl a. The proportion of large phytoplankton increases as the depth of the upper mixed layer (ZUML), and the corresponding rate of vertical mixing, increases. We hypothesize that this change in phytoplankton composition with varying ZUML is related to the competition for light, and results from modification of the light regime caused by vertical mixing.
Resumo:
Air-sea gas exchange plays a key role in the cycling of greenhouse and other biogeochemically important gases. Although air-sea gas transfer is expected to change as a consequence of the rapid decline in summer Arctic sea ice cover, little is known about the effect of sea ice cover on gas exchange fluxes, especially in the marginal ice zone. During the Polarstern expedition ARK-XXVI/3 (TransArc, August/September 2011) to the central Arctic Ocean, we compared 222Rn/226Ra ratios in the upper 50 m of 14 ice-covered and 4 ice-free stations. At three of the ice-free stations, we find 222Rn-based gas transfer coefficients in good agreement with expectation based on published relationships between gas transfer and wind speed over open water when accounting for wind history from wind reanalysis data. We hypothesize that the low gas transfer rate at the fourth station results from reduced fetch due to the proximity of the ice edge, or lateral exchange across the front at the ice edge by restratification. No significant radon deficit could be observed at the ice-covered stations. At these stations, the average gas transfer velocity was less than 0.1 m/d (97.5% confidence), compared to 0.5-2.2 m/d expected for open water. Our results show that air-sea gas exchange in an ice-covered ocean is reduced by at least an order of magnitude compared to open water. In contrast to previous studies, we show that in partially ice-covered regions, gas exchange is lower than expected based on a linear scaling to percent ice cover.