973 resultados para Respiratory muscle


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A characteristic feature of chronic heart failure (CHF) is reduced exercise tolerance. Several factors contributing to this have been identified, including alterations in central haemodynamics, skeletal muscle oxygen utilisation and respiratory muscle dysfunction. This review focuses on abnormalities identified in respiratory muscle structure and function in CHF and recent evidence for the benefit of selective inspiratory muscle training in CHF. Included in this review are findings from original investigations, with a specific focus on recent published data.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJETIVO: Avaliar o efeito da utilização de um programa de treinamento específico dos músculos respiratórios sobre a função pulmonar em indivíduos tabagistas. MÉTODOS: Foram estudados 50 indivíduos tabagistas assintomáticos com idade superior a 30 anos, nos seguintes momentos: A0 - avaliação inicial seguida do protocolo de exercícios respiratórios; A1 - reavaliação após 10 minutos da aplicação do protocolo; e A2 -reavaliação final após duas semanas de treinamento utilizando o mesmo protocolo três vezes por semana. A avaliação foi realizada através das medidas de pressões respiratórias máximas (PImax. e PEmax.), picos de fluxo respiratórios (PFI e PFE), ventilação voluntária máxima (VVM), capacidade vital Forçada (CVF) e Volume expiratório forçado no primeiro segundo (VEF1). RESULTADOS: Não houve melhora na CVF e VEF1 da avaliação inicial para a final. Houve aumento significativo das variáveis PFI, PFE, VVM e PImax nas avaliações A1 e A2. A variável PEmax. aumentou somente na avaliação A2. CONCLUSÃO: A aplicação de protocolo de exercícios respiratórios com e sem carga adicional em indivíduos tabagistas produziu melhora imediata na performance dos músculos respiratórios, mas esta melhora foi mais acentuada após duas semanas de exercício.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of adding L-carnitine to a whole-body and respiratory training program were determined in moderate-to-severe chronic obstructive pulmonary disease (COPD) patients. Sixteen COPD patients (66 ± 7 years) were randomly assigned to L-carnitine (CG) or placebo group (PG) that received either L-carnitine or saline solution (2 g/day, orally) for 6 weeks (forced expiratory volume on first second was 38 ± 16 and 36 ± 12%, respectively). Both groups participated in three weekly 30-min treadmill and threshold inspiratory muscle training sessions, with 3 sets of 10 loaded inspirations (40%) at maximal inspiratory pressure. Nutritional status, exercise tolerance on a treadmill and six-minute walking test, blood lactate, heart rate, blood pressure, and respiratory muscle strength were determined as baseline and on day 42. Maximal capacity in the incremental exercise test was significantly improved in both groups (P < 0.05). Blood lactate, blood pressure, oxygen saturation, and heart rate at identical exercise levels were lower in CG after training (P < 0.05). Inspiratory muscle strength and walking test tolerance were significantly improved in both groups, but the gains of CG were significantly higher than those of PG (40 ± 14 vs 14 ± 5 cmH2O, and 87 ± 30 vs 34 ± 29 m, respectively; P < 0.05). Blood lactate concentration was significantly lower in CG than in PG (1.6 ± 0.7 vs 2.3 ± 0.7 mM, P < 0.05). The present data suggest that carnitine can improve exercise tolerance and inspiratory muscle strength in COPD patients, as well as reduce lactate production.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CONTEXTO E OBJETIVO: A disfunção pulmonar no obeso pode estar associada a comprometimento muscular respiratório e também pode ser influenciada pelo predomínio de distribuição de gordura corporal na região toraco-abdominal. O objetivo foi avaliar a força dos músculos respiratórios em obesos e analisar a influência da distribuição do tecido adiposo. TIPO DE ESTUDO E LOCAL: Estudo transversal no período pré-operatório de Cirurgia Bariátrica. Estudo desenvolvido no Programa de Pós-Graduação em Bases Gerais da Cirurgia da Universidade Estadual Paulista (Unesp) - Faculdade de Medicina de Botucatu. MÉTODO: Mensuração da força dos músculos respiratórios através das medidas das pressões inspiratórias e expiratórias máximas (PImax e PEmax) em obesos candidatos à cirurgia bariátrica. Avaliar a distribuição do tecido adiposo através da relação entre as circunferências da cintura e quadril (RC/Q). Comparar esses atributos com os valores de referência de normalidade e também entre grupos com diferentes índices de massa corpórea (IMC). RESULTADOS: Foram avaliados 23 homens e 76 mulheres. Todos foram submetidos à avaliação de PImax e 86 realizaram a PEmax. O IMC médio foi de 44,42 kg/m². Os valores de PImax e de PEmax estavam dentro dos padrões de normalidade, a relação cintura-quadril mostrou distribuição do tecido adiposo na porção superior corporal e não houve correlação entre as variáveis estudadas. CONCLUSÃO: Na população de obesos estudada, o excesso de peso não provocou alterações na força dos músculos respiratórios, e as modificações não foram influenciadas pela distribuição de gordura predominante em porção superior corporal.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Infants with chronic lung disease (CLD) have a capacity to maintain functional lung volume despite alterations to their lung mechanics. We hypothesize that they achieve this by altering breathing patterns and dynamic elevation of lung volume, leading to differences in the relationship between respiratory muscle activity, flow and lung volume. Lung function and transcutaneous electromyography of the respiratory muscles (rEMG) were measured in 20 infants with CLD and in 39 healthy age-matched controls during quiet sleep. We compared coefficient of variations (CVs) of rEMG and the temporal relationship of rEMG variables, to flow and lung volume [functional residual capacity (FRC)] between these groups. The time between the start of inspiratory muscle activity and the resulting flow (tria)--in relation to respiratory cycle time--was significantly longer in infants with CLD. Although FRC had similar associations with tria and postinspiratory activity (corrected for respiratory cycle time), the CV of the diaphragmatic rEMG was lower in CLD infants (22.6 versus 31.0%, p = 0.030). The temporal relationship of rEMG to flow and FRC and the loss of adaptive variability provide additional information on coping mechanisms in infants with CLD. This technique could be used for noninvasive bedside monitoring of CLD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

INTRODUCTION: It has been suggested that infants dynamically regulate their tidal flow and end-expiratory volume level. The interaction between muscle activity, flow and lung volume in spontaneously sleeping neonates is poorly studied, since it requires the assessment of transcutaneous electromyography of respiratory muscles (rEMG) in matched comparison to lung function measurements. METHODS: After determining feasibility and repeatability of rEMG in 20 spontaneously sleeping healthy neonates, we measured the relative impact of intercostal and diaphragmatic EMG activity in direct comparison to the resulting tidal flow and FRC. RESULTS: We found good feasibility, repeatability and correlation of timing indices between rEMG activity and flow. The rEMG amplitude was significantly dependent on the resistive load of the face mask. Diaphragm and intercostal muscle activity commenced prior to the onset of flow and remained active during the expiratory cycle. The relative contribution of intercostal and diaphragmatic activity to flow was variable and changed dynamically. CONCLUSION: Using matched rEMG, air flow and lung volume measurements, we have found good feasibility and repeatability of intercostal and diaphragm rEMG measurements and provide the first quantitative measures of the temporal relationship between muscle activity and flow in spontaneously sleeping healthy neonates. Lung mechanical function is dynamically regulated and adapts on a breath to breath basis. So, non-invasive rEMG measurements alone or in combination with lung function might provide a more comprehensive picture of pulmonary mechanics in future studies. The data describing the timing of EMG and flow may be important for future studies of EMG triggered mechanical ventilation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The diaphragm is the primary inspiratory pump muscle of breathing. Notwithstanding its critical role in pulmonary ventilation, the diaphragm like other striated muscles is malleable in response to physiological and pathophysiological stressors, with potential implications for the maintenance of respiratory homeostasis. This review considers hypoxic adaptation of the diaphragm muscle, with a focus on functional, structural, and metabolic remodeling relevant to conditions such as high altitude and chronic respiratory disease. On the basis of emerging data in animal models, we posit that hypoxia is a significant driver of respiratory muscle plasticity, with evidence suggestive of both compensatory and deleterious adaptations in conditions of sustained exposure to low oxygen. Cellular strategies driving diaphragm remodeling during exposure to sustained hypoxia appear to confer hypoxic tolerance at the expense of peak force-generating capacity, a key functional parameter that correlates with patient morbidity and mortality. Changes include, but are not limited to: redox-dependent activation of hypoxia-inducible factor (HIF) and MAP kinases; time-dependent carbonylation of key metabolic and functional proteins; decreased mitochondrial respiration; activation of atrophic signaling and increased proteolysis; and altered functional performance. Diaphragm muscle weakness may be a signature effect of sustained hypoxic exposure. We discuss the putative role of reactive oxygen species as mediators of both advantageous and disadvantageous adaptations of diaphragm muscle to sustained hypoxia, and the role of antioxidants in mitigating adverse effects of chronic hypoxic stress on respiratory muscle function.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: Assess the effect of re-expansive respiratory patterns associated to respiratory biofeedback (RBF) on pulmonary function, respiratory muscle strength and habits in individuals with functional mouth breathing (FMB).Methods: Sixty children with FMB were divided into experimental and control groups. The experimental group was submitted to 15 sessions of re-expansive respiratory patterns associated to RBF (biofeedback pletsmovent; MICROHARD (R) V1.0), which provided biofeedback of the thoracic and abdominal movements. The control group was submitted to 15 sessions using biofeedback alone. Spirometry, maximum static respiratory pressure measurements and questions regarding habits (answered by parents/guardians) were carried out before and after therapy. The Student's t-test for paired data and non-parametric tests were employed for statistical analysis at a 5% Level of significance.Results: Significant changes were found in forced vital. capacity, Tiffeneau index scores, maximum expiratory pressure, maximum inspiratory pressure and habits assessed in FMB with the use of RBF associated to the re-expansive patterns. No significant differences were found comparing the experimental and control groups.Conclusions: The results allow the conclusion that RBF associated to re-expansive patterns improves forced vital capacity, Tiffeneau index scores, respiratory muscle strength and habits in FMB and can therefore be used as a form of therapy for such individuals. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: To evaluate maximal respiratory pressures, pulmonary volumes and capacities and exercise functional capacity in pregnant women with preeclampsia. Method: Primigravid women with preeclampsia and healthy primigravid women were evaluated by means of manovacuometry, spirometry and the 6-minute walk test. Results: The group with preeclampsia showed higher minute ventilation and lower forced vital capacity and exercise tolerance. The presence of preeclampsia and forced vital capacity were predictors in the six-minute walk test. Conclusion: Preeclampsia showed significant alterations in the respiratory system and was associated with lower exercise tolerance; however, it did not affect respiratory muscle functions.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Study Design. Case-control study.Objective. To evaluate respiratory muscle force in children with myelomeningocele. Summary of Background Data. Myelomeningocele is a common spinal cord malformation with limitations linked to central nervous system lesions and abnormalities in respiratory movements. Despite this, little attention has been given to evaluating respiratory muscle force in these patients.Methods. Children with myelomeningocele aged between 4 and 14 years ( myelomeningocele group; MG, n = 20) were studied and compared with healthy children ( control group; CG, n = 20) matched for age and gender. Respiratory muscular force was evaluated by maximum inspiratory ( Pimax) and expiratory ( Pemax) pressures.Results. Groups were similar for age [ CG = 8 ( 6 - 13) = MG = 8 ( 4 - 14), P > 0.05]; gender, and body mass index [ CG = 17.4 ( 14.1 - 24.7) x MG = 19.2 ( 12.6 - 31.9), P > 0.05]. The lumbosacral region was predominantly affected ( 45%). Maximum respiratory pressures were significantly higher in CG than MG ( Pimax = CG: similar to 83 +/- 21.75 > MG: -54.1 +/- 23.66; P < 0.001 and Pemax = CG: + 87.4 +/- 26.28 > MG: + 64.6 +/- 26.97; P = 0.01). Patients with upper spinal lesion ( UL) had lower maximum respiratory pressure values than those with lower spinal lesion ( LL), [Pimax ( UL = - 38.33 +/- 11.20 cm H2O x LL = - 60.85 +/- 24.62 cm H2O), P < 0.041 and Pemax ( UL = + 48 +/- 20.82 cm H2O x LL + 71.71 +/- 26.73 cm H2O), P = 0.067]).Conclusion. Children with myelomeningocele at the ages studied presented reduced respiratory muscle force with more compromise in upper spinal lesion.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background: The diaphragm is the major respiratory muscle affected by Duchenne muscular dystrophy (DMD) and is responsible for causing 80% of deaths. The use of mechanical forces that act on the body or intermittent pressure on the airways improves the quality of life of patients but does not prevent the progression of respiratory failure. Thus, diseases that require tissue repair, such as DMD, represent a group of pathologies that have great potential for cell therapy. The application of stem cells directly into the diaphragm instead of systemic application can reduce cell migration to other affected areas and increase the chances of muscle reorganisation. The mdx mouse is a suitable animal model for this research because its diaphragmatic phenotype is similar to human DMD. Therefore, the aim of this study was to assess the potential cell implantation in the diaphragm muscle after the xenotransplantation of stem cells. Methods: A total of 9 mice, including 3 control BALB/Cmice, 3 5-month-old mdx mice without stem cell injections and 3 mdx mice injected with stem cells, were used. The animals injected with stem cells underwent laparoscopy so that stem cells from GFP-labelled rabbit olfactory epithelium could be locally injected into the diaphragm muscle. After 8 days, all animals were euthanised, and the diaphragm muscle was dissected and subjected to histological and immunohistochemical analyses. Results: Both the fresh diaphragm tissue and immunohistochemical analyses showed immunopositive GFP labelling of some of the cells and immunonegativity of myoblast bundles. In the histological analysis, we observed a reduction in the inflammatory infiltrate as well as the presence of a few peripheral nuclei and myoblast bundles. Conclusion: We were able to implant stem cells into the diaphragm via local injection, which promoted moderate muscle reorganisation. The presence of myoblast bundles cannot be attributed to stem cell incorporation because there was no immunopositive labelling in this structure. It is believed that the formation of the bundles may have been stimulated by cellular signalling mechanisms that have not yet been elucidated.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objectives: Cardiac surgery (CC) determines systemic and pulmonary changes that require special care. What motivated several studies conducted in healthy subjects to assess muscle strength were the awareness of the importance of respiratory muscle dysfunction in the development of respiratory failure. These studies used maximal inspiratory pressure (MIP) and maximal expiratory pressure (MEP) values. This study examined the concordance between the values predicted by the equations proposed by Black & Hyatt and Neder, and the measured values in cardiac surgery (CS) patients. Methods: Data were collected from preoperative evaluation forms. The Lin coefficient and Bland-Altman plots were used for statistical concordance analysis. The multiple linear regression and analysis of variance (ANOVA) were used to produce new formulas. Results: There were weak correlations of 0.22 and 0.19 in the MIP analysis and of 0.10 and 0.32 in the MEP analysis, for the formulas of Black & Hyatt and Neder, respectively. The ANOVA for both MIP and MEP were significant (P <0.0001), and the following formulas were developed: MIP = 88.82 - (0.51 x age) + (19.86 x gender), and MEP = 91.36 -(030 x age) + (29.92 x gender). Conclusions: The Black and Hyatt and Neder formulas predict highly discrepant values of MIP and MEP and should not be used to identify muscle weakness in CS patients.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

PURPOSE: To evaluate the effect of inspiratory muscle training (IMT) on cardiac autonomic modulation and on peripheral nerve sympathetic activity in patients with chronic heart failure (CHF). METHODS: Functional capacity, low-frequency (LF) and high-frequency (HF) components of heart rate variability, muscle sympathetic nerve activity inferred by microneurography, and quality of life were determined in 27 patients with CHF who had been sequentially allocated to 1 of 2 groups: (1) control group (with no intervention) and (2) IMT group. Inspiratory muscle training consisted of respiratory exercises, with inspiratory threshold loading of seven 30-minute sessions per week for a period of 12 weeks, with a monthly increase of 30% in maximal inspiratory pressure (PImax) at rest. Multivariate analysis was applied to detect differences between baseline and followup period. RESULTS: Inspiratory muscle training significantly increased PImax (59.2 +/- 4.9 vs 87.5 +/- 6.5 cmH(2)O, P = .001) and peak oxygen uptake (14.4 +/- 0.7 vs 18.9 +/- 0.8 mL.kg(-1).min(-1), P = .002); decreased the peak ventilation (V. E) +/- carbon dioxide production (V-CO2) ratio (35.8 +/- 0.8 vs 32.5 +/- 0.4, P = .001) and the (V) over dotE +/-(V) over dotCO(2) slope (37.3 +/- 1.1 vs 31.3 +/- 1.1, P = .004); increased the HF component (49.3 +/- 4.1 vs 58.4 +/- 4.2 normalized units, P = .004) and decreased the LF component (50.7 +/- 4.1 vs 41.6 +/- 4.2 normalized units, P = .001) of heart rate variability; decreased muscle sympathetic nerve activity (37.1 +/- 3 vs 29.5 +/- 2.3 bursts per minute, P = .001); and improved quality of life. No significant changes were observed in the control group. CONCLUSION: Home-based IMT represents an important strategy to improve cardiac and peripheral autonomic controls, functional capacity, and quality of life in patients with CHF.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Muscular weakness and muscle wasting may often be observed in critically ill patients on intensive care units (ICUs) and may present as failure to wean from mechanical ventilation. Importantly, mounting data demonstrate that mechanical ventilation itself may induce progressive dysfunction of the main respiratory muscle, i.e. the diaphragm. The respective condition was termed 'ventilator-induced diaphragmatic dysfunction' (VIDD) and should be distinguished from peripheral muscular weakness as observed in 'ICU-acquired weakness (ICU-AW)'. Interestingly, VIDD and ICU-AW may often be observed in critically ill patients with, e.g. severe sepsis or septic shock, and recent data demonstrate that the pathophysiology of these conditions may overlap. VIDD may mainly be characterized on a histopathological level as disuse muscular atrophy, and data demonstrate increased proteolysis and decreased protein synthesis as important underlying pathomechanisms. However, atrophy alone does not explain the observed loss of muscular force. When, e.g. isolated muscle strips are examined and force is normalized for cross-sectional fibre area, the loss is disproportionally larger than would be expected by atrophy alone. Nevertheless, although the exact molecular pathways for the induction of proteolytic systems remain incompletely understood, data now suggest that VIDD may also be triggered by mechanisms including decreased diaphragmatic blood flow or increased oxidative stress. Here we provide a concise review on the available literature on respiratory muscle weakness and VIDD in the critically ill. Potential underlying pathomechanisms will be discussed before the background of current diagnostic options. Furthermore, we will elucidate and speculate on potential novel future therapeutic avenues.