912 resultados para Resonant controller
Resumo:
Problems like windup or rollover arise in a PI controller working under saturation. Hence anti-windup schemes are necessary to minimize performance degradation.Similar situation may occur in a Proportional Resonant(PR)controller in the presence of a sustained error input.Several methods can be employed based on existing knowledge on PI controller to counter this problem.In this paper few such schemes are proposed and implemented in FPGA and MATLAB and from the obtained results their possible use and limitations have been studied.
Resumo:
A regenerative or circulating-power method is presented in this paper for heat run test on the legs of a three-level neutral point clamped (NPC) inverter. This test ensures that only losses are drawn from the dc supply, while rated power is circulated between the two legs, thus minimising wastage of energy. A proportional-resonant (PR) controller based current control scheme is proposed here for the circulating power test setup in NPC inverter. Simulation and experimental results are presented to validate the controller design at various operating conditions. Results of thermal test on the inverter legs are presented at two different operating conditions.
Resumo:
Two-stage isolated converters for photovoltaic (PV) applications commonly employ a high-frequency transformer on the DC-DC side, submitting the DC-AC inverter switches to high voltages and forcing the use of IGBTs instead of low-voltage and low-loss MOSFETs. This paper shows the modeling, control and simulation of a single-phase full-bridge inverter with high-frequency transformer (HFT) that can be used as part of a two-stage converter with transformerless DC-DC side or as a single-stage converter (simple DC-AC inverter) for grid-connected PV applications. The inverter is modeled in order to obtain a small-signal transfer function used to design the PResonant current control regulator. A high-frequency step-up transformer results in reduced voltage switches and better efficiency compared with converters in which the transformer is used on the DC-DC side. Simulations and experimental results with a 200 W prototype are shown. © 2012 IEEE.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Grid connected PWM-VSIs are being increasingly used for applications such as Distributed Generation (DG), power quality, UPS etc. Appropriate control strategies for grid synchronisation and line current regulation are required to establish such a grid interconnection and power transfer. Control of three phase VSIs is widely reported in iterature. Conventionally, dq control in Synchronous Reference Frame(SRF) is employed for both PLL and line current control where PI-controllers are used to track the DC references. Single phase systems do not have defined direct (d) and quadrature (q) axis components that are required for SRF transformation. Thus, references are AC in nature and hence usage of PI controllers cannot yield zero steady state errors. Resonant controllers have the ability to track AC references accurately. In this work, a resonant controller based single phase PLL and current control technique are being employed for tracking grid frequency and the AC current reference respectively. A single phase full bridge converter is being operated as a STATCOM for performance evaluation of the control scheme.
Resumo:
Voltage source inverters use large electrolytic capacitors in order to decouple the energy between the utility and the load, keeping the DC link voltage constant. Decreasing the capacitance reduces the distortion in the inverter input current but this also affects the load with low-order harmonics and generate disturbances at the input voltage. This paper applies the P+RES controller to solve the challenge of regulating the output current by means of controlling the magnitude of the current space vector, keeping it constant thus rejecting harmonic disturbances that would otherwise propagate to the load. This work presents a discussion of the switching and control strategy. © 2011 IEEE.
Resumo:
A new solution for unbalanced and nonlinear loads in terms of power circuit topology and controller structure is proposed in this paper. A three-phase four-wire high-frequency ac-link inverter is adopted to cater to such loads. Use of high-frequency transformer results in compact and light-weight systems. The fourth wire is taken out from the midpoint of the isolation transformer in order to avoid the necessity of an extra leg. This makes the converter suitable for unbalanced loads and eliminates the requirements of bulky capacitor in half-bridge inverter. The closed-loop control is carried out in stationary reference frame using proportional + multiresonant controller (three separate resonant controller for fundamental, fifth and seventh harmonic components). The limitations on improving steady-state response of harmonic resonance controllers is investigated and mitigated using a lead-lag compensator. The proposed voltage controller is used along with an inner current loop to ensure excellent performance of the power converter. Simulation studies and experimental results with 1 kVA prototype under nonlinear and unbalanced loading conditions validate the proposed scheme.
Resumo:
This paper deals with the design and analysis of a Dynamic Voltage Restorer output voltage control. Such control is based on a multiloop strategy, with an inner current PID regulator and an outer P+Resonant voltage controller. The inner regulator is applied on the output inductor current. It will be also demonstrated how the load current behavior may influence in the DVR output voltage, which. justifies the need for the resonant controller. Additionally, it will be discussed the application of a modified algorithm for the identification of the DVR voltage references, which is based on a previously presented positive sequence detector. Since the studied three-phase DVR is assumed to be based on three identical H-bridge converters, all the analysis and design procedures were realized by means of single-phase equivalent circuits. The discussions and conclusions are supported by theoretical calculations, nonlinear simulations and some experimental results.
Resumo:
This paper deals with the design and analysis of a Dynamic Voltage Restorer output voltage control. Such control is based on a multiloop strategy, with an inner current PID regulator and an outer P+Resonant voltage controller. The inner regulator is applied on the output inductor current. It will be also demonstrated how the load current behavior may influence in the DVR output voltage, which justifies the need for the resonant controller. Additionally, it will be discussed the application of a modified algorithm for the identification of the DVR voltage references, which is based on a previously presented positive sequence detector. Since the studied three-phase DVR is assumed to be based on three identical H-bridge converters, all the analysis and design procedures were realized by means of single-phase equivalent circuits. The discussions and conclusions are supported by theoretical calculations, nonlinear simulations and some experimental results. ©2008 IEEE.
Resumo:
Capacitors are widely used for power-factor correction (PFC) in power systems. When a PFC capacitor is installed with a certain load in a microgrid, it may be in parallel with the filter capacitor of the inverter interfacing the utility grid and the local distributed-generation unit and, thus, change the effective filter capacitance. Another complication is the possibility of occurrence of resonance in the microgrid. This paper conducts an in-depth investigation of the effective shunt-filter-capacitance variation and resonance phenomena in a microgrid due to a connection of a PFC capacitor. To compensate the capacitance-parameter variation, an Hinfin controller is designed for the voltage-source- inverter voltage control. By properly choosing the weighting functions, the synthesized Hinfin controller would exhibit high gains at the vicinity of the line frequency, similar to traditional high- performance P+ resonant controller and, thus, would possess nearly zero steady-state error. However, with the robust Hinfin controller, it will be possible to explicitly specify the degree of robustness in face of parameter variations. Furthermore, a thorough investigation is carried out to study the performance of inner current-loop feedback variables under resonance conditions. It reveals that filter-inductor current feedback is more effective in damping the resonance. This resonance can be further attenuated by employing the dual-inverter microgrid conditioner and controlling the series inverter as a virtual resistor affecting only harmonic components without interference with the fundamental power flow. And finally, the study in this paper has been tested experimentally using an experimental microgrid prototype.
Resumo:
Bidirectional Inductive Power Transfer (IPT) systems are preferred for Vehicle-to-Grid (V2G) applications. Typically, bidirectional IPT systems consist of high order resonant networks, and therefore, the control of bidirectional IPT systems has always been a difficulty. To date several different controllers have been reported, but these have been designed using steady-state models, which invariably, are incapable of providing an accurate insight into the dynamic behaviour of the system A dynamic state-space model of a bidirectional IPT system has been reported. However, currently this model has not been used to optimise the design of controllers. Therefore, this paper proposes an optimised controller based on the dynamic model. To verify the operation of the proposed controller simulated results of the optimised controller and simulated results of another controller are compared. Results indicate that the proposed controller is capable of accurately and stably controlling the power flow in a bidirectional IPT system.
Resumo:
This paper proposes a linear large signal state-space model for a phase controlled CLC (Capacitor Inductor Capacitor) Resonant Dual Active Bridge (RDAB). The proposed model is useful for fast simulation and for the estimation of state variables under large signal variation. The model is also useful for control design because the slow changing dynamics of the dq variables are relatively easy to control. Simulation results of the proposed model are presented and compared to the simulated circuit model to demonstrate the proposed model's accuracy. This proposed model was used for the design of a Proportional-Integral (PI) controller and it has been implemented in the circuit simulation to show the proposed models usefulness in control design.
Resumo:
Delayed feedback (DF) control is a well-established technique to suppress single frequency vibration of a non-minimum phase system. Modal control is also a well-established technique to control multiple vibration modes of a minimum phase system. In this paper these techniques are combined to simultaneously suppress multiple vibration modes of a non-minimum phase system involving a small time delay. The control approach is called delayed resonant feedback (DRF) where each modal controller consists of a modal filter to extract the target mode signal from the vibration response, and a phase compensator to account for the phase delay of the mode. The methodology is first discussed using a single mode system. A multi-mode system is then studied and experimental results are presented to demonstrate the efficacy of the control approach for two modes of a beam. It is shown that the system behaves as if each mode under control has a dynamic vibration absorber attached to it, even though the actuator and the sensor are not collocated and there is a time delay in the control system. © 2013 IOP Publishing Ltd.
Resumo:
In this work, a method of computing PD stabilising gains for rotating systems is presented based on the D-decomposition technique, which requires the sole knowledge of frequency response functions. By applying this method to a rotating system with electromagnetic actuators, it is demonstrated that the stability boundary locus in the plane of feedback gains can be easily plotted, and the most suitable gains can be found to minimise the resonant peak of the system. Experimental results for a Laval rotor show the feasibility of not only controlling lateral shaft vibration and assuring stability, but also helps in predicting the final vibration level achieved by the closed-loop system. These results are obtained based solely on the input-output response information of the system as a whole.