999 resultados para Resins, Plant
Resumo:
Social life is generally associated with an increased exposure to pathogens and parasites, due to factors such as high population density, frequent physical contact and the use of perennial nest sites. However, sociality also permits the evolution of new collective behavioural defences. Wood ants, Formica paralugubris, commonly bring back pieces of solidified coniferous resin to their nest. Many birds and a few mammals also incorporate green plant material into their nests. Collecting plant material rich in volatile compounds might be an efficient way to fight bacteria and fungi. However, no study has demonstrated that this behaviour has a positive effect on survival. Here, we provide the first experimental evidence that animals using plant compounds with antibacterial and antifungal properties survive better when exposed to detrimental micro-organisms. The presence of resin strongly improves the survival of F. paralugubris adults and larvae exposed to the bacteria Pseudomonas fluorescens, and the survival of larvae exposed to the entomopathogenic fungus Metarhizium anisopliae. These results show that wood ants capitalize on the chemical defences which have evolved in plants to collectively protect themselves against pathogens.
Resumo:
The purpose of this study was to examine histologically the effects of propolis topical application to dental sockets and skin wounds. After topical application of either a 10% hydro-alcoholic solution of propolis or 10% hydro-alcoholic solution alone, cutaneous wound healing and the socket wound after tooth extraction were examined. The rats were sacrificed at 3, 6, 9, 15 and 21 days after the operation. The specimens were subjected to routine laboratory studies after staining with hematoxylin and eosin. It was concluded that topical application of propolis hydro-alcoholic solution accelerated epithelial repair after tooth extraction but had no effect on socket wound healing.
Resumo:
Objective: The purpose of this in vitro study was to evaluate some forms of preventing or avoiding demineralization within enamel cavity walls adjacent to amalgam restorations. Method and materials: Third molar teeth were sectioned to obtain 72 specimens, divided into one control and five experimental groups: amalgam only; varnish plus amalgam; acidulated phosphate fluoride plus amalgam; adhesive amalgam; glass-ionomer cement plus amalgam; control (amalgam only, not subjected to a demineralization challenge). The experimental groups were subjected to pH and thermal cycling and then submitted to enamel hardness determinations. Results: Significant differences between the treatment groups revealed that the bonded amalgam technique offered the best resistance to demineralization. The use of cavity varnish resulted in greater mineral loss than amalgam placed alone. Conclusion: The use of an adhesive system, glass-ionomer cement, or acidulated phosphate fluoride under amalgam restorations may interfere with development of secondary caries.
Resumo:
The aim of this in vitro study was to evaluate marginal leakage in class V restorations in primary teeth restored with amalgam, using three different techniques. Thirty maxillary anterior primary teeth, clinically sound and naturally exfoliated, were used. In group 1 (n = 10), two thin layers of a copal varnish (Cavitine) were applied. In group 2 (n = 10), Scotchbond Multi-Purpose Plus, a dual adhesive system, was used according to manufacturer instructions. In group 3 (n = 10), One-Step adhesive system in combination with a low-viscosity resin (Resinomer) were used according to manufacturer instructions. All samples were restored with a high-copper dental amalgam alloy (GS 80, SDI). After restoration, the samples were stored in normal saline at 37 degrees C for 72 h. The specimens were polished, thermocycled (500 cycles, 5 degrees and 55 degrees C, 30-s dwell time) and impermeabilized with fingernail polish to within 1.0 mm of the restoration margins. The teeth were then placed in 0.5% methylene blue for 4 h. Finally, the samples were sectioned and evaluated for marginal leakage. The Kruskal-Wallis test showed that the filled adhesive resin (group 3) had the least microleakage. There was no significant difference between groups 1 and 2.
Resumo:
This study evaluated the dimensional alterations and the solubility of two experimental endodontic sealers based on Copaifera multijuga oil-resin (Biosealer) and castor oil bean cement (Poliquil), maintained in different storage solutions. Twenty specimens (3 mm diameter and 2 mm height) of each sealer were assigned to 2 groups (n=10) according to the storage solution: simulated tissue fluid (STF) or distilled water (DW). The specimens were stored in these solutions during 90 days, being removed every 30 days for weighting. The solutions were renewed every 15 days. The results were subjected to statistical analysis by Dunn's and Mann-Whitney tests (α=0.05). The solubility of Poliquil was higher in STF (38.4 ± 36.0) than in DW (28.4 ± 15.0), while Biosealer showed higher solubility in DW (34.61 ± 6.0) than in STF (18.59 ± 8.0). The storage solution influenced the behavior of sealers in relation to the weight variation (p=0.0001). Poliquil presented higher variation of weight independent of the solution (p=0.239). Biosealer also presented higher variation of weight regardless of the solution (p=0.0001). The solubility of Biosealer was different from that of Poliquil, but both sealers showed low solubility in STF. Under the tested conditions, neither of the materials were according to the ADA'S specification.
Resumo:
Fertilizer plant’s process waters contain high concentrations of nitrogen compounds, such as ammonium and nitrate. Phosphorus and fluorine, which originate from phosphoric acid and rock phosphate (apatite) used in fertilizer production, are also present. Phosphorus and nitrogen are the primary nutrients causing eutrophication of surface waters. At fertilizer plant process waters are held in closed internal circulation. In a scrubber system process waters are used for washing exhaust gases from fertilizer reactors and dry gases from granulation drums as well as for cooling down the fertilizer slurry in neutralization reactor. Solids in process waters are separated in an inclined plate settler by gravitational sedimentation. However, the operation of inclined plate settler has been inadequate. The aim of this thesis was to intensify the operation of inclined plate settler and thus the solids separation e.g. through coagulation and/or flocculation process. Chemical precipitation was studied to reduce the amount of dissolved species in process waters. Specific interest was in precipitation of nitrogen, phosphorus, and fluorine containing specimens. Amounts of phosphorus and fluorine were reduced significantly by chemical precipitation. When compared to earlier studies, annual chemical costs were almost eight times lower. Instead, nitrogen compounds are readily dissolved in water, thus being difficult to remove by precipitation. Possible alternative techniques for nitrogen removal are adsorption, ion exchange, and reverse osmosis. Settling velocities of pH adjusted and flocculated process waters were sufficient for the operation of inclined plate settler. Design principles of inclined plate settler are also presented. In continuation studies, flow conditions in inclined plate settler should be modelled with computational fluid dynamics and suitability of adsorbents, ion exchange resins, and membranes should be studied in laboratory scale tests.
Resumo:
Ion-exchange chromatography has emerged as a practical and rapid method of separation and analysis. A review of literature on chelating resins reveals that eventhough investigations on highly selective resins are intensively pursued from early 1940s, such resins are still insufficiently used in analytical chemistry and process technology. This is mainly due to the complexity of their synthesis and high cost. In this context, it is worthwhile to develop novel chelating resins which are specific or at least selective towards a group of metal ions. Synthesis, characterization and analytical applications of two such resins are presented in this thesis.
Resumo:
Epoxy resins are mainly produced by reacting bisphenol A with epichlorohydrin. Growing concerns about the negative health effects of bisphenol A are urging researchers to find alternatives. In this work diphenolic acid is suggested, as it derives from levulinic acid, obtained from renewable resources. Nevertheless, it is also synthesized from phenol, from fossil resources, which, in the current paper has been substituted by plant-based phenols. Two interesting derivatives were identified: diphenolic acid from catechol and from resorcinol. Epichlorohydrin on the other hand, is highly carcinogenic and volatile, leading to a tremendous risk of exposure. Thus, two approaches have been investigated and compared with epichlorohydrin. The resulting resins have been characterized to find an appropriate application, as epoxy are commonly used for a wide range of products, ranging from composite materials for boats to films for food cans. Self-curing capacity was observed for the resin deriving from diphenolic acid from catechol. The glycidyl ether of the diphenolic acid from resorcinol, a fully renewable compound, was cured in isothermal and non-isothermal tests tracked by DSC. Two aliphatic amines were used, namely 1,4-butanediamine and 1,6-hexamethylendiamine, in order to determine the effect of chain length on the curing of an epoxy-amine system and determine the kinetic parameters. The latter are crucial to plan any industrial application. Both diamines demonstrated superior properties compared to traditional bisphenol A-amine systems.
Resumo:
The leaf cuticular ultrastructure of some plant species has been examined by transmission electron microscopy (TEM) in only few studies. Attending to the different cuticle layers and inner structure, plant cuticles have been grouped into six general morphological types. With the aim of critically examining the effect of cuticle isolation and preparation for TEM analysis on cuticular ultrastructure, adaxial leaf cuticles of blue-gum eucalypt, grey poplar, and European pear were assessed, following a membrane science approach. The embedding and staining protocols affected the ultrastructure of the cuticles analysed. The solubility parameter, surface tension, and contact angles with water of pure Spurr's and LR-White resins were within a similar range. Differences were however estimated for resin : solvent mixtures, since Spurr’s resin is combined with acetone and LR-White resin is mixed with ethanol. Given the composite hydrophilic and lipophilic nature of plant cuticles, the particular TEM tissue embedding and staining procedures employed may affect sample ultrastructure and the interpretation of the results in physicochemical and biological terms. It is concluded that tissue preparation procedures may be optimised to facilitate the observation of the micro- and nanostructure of cuticular layers and components with different degrees of polarity and hydrophobicity.
Resumo:
Ion exchange resins are used for many purposes in various areas of science and commerce. One example is the use of cation exchange resins in the nuclear industry for the clean up of radioactively contaminated water (for example the removal of 137Cs). However, during removal of radionuclides, the resin itself becomes radioactively contaminated, and must be treated as Intermediate Level Waste. This radioactive contamination of the resin creates a disposal problem. Conventionally, there are two main avenues of disposal for industrial wastes, landfill burial or incineration. However, these are regarded as inappropriate for the disposal of the cation exchange resin involved in this project. Thus, a method involving the use of Fenton's Reagent (Hydrogen Peroxide/soluble Iron catalyst) to destroy the resin by wet oxidation has been developed. This process converts 95% of the solid resin to gaseous CO2, thus greatly reducing the volume of radioactive waste that has to be disposed of. However, hydrogen peroxide is an expensive reagent, and is a major component of the cost of any potential plant for the destruction of ion exchange resin. The aim of my project has been to discover a way of improving the efficiency of the destruction of the resin thus reducing the cost involved in the use of hydrogen peroxide. The work on this problem has been concentrated in two main areas:-1) Use of analytical techniques such as NMR and IR to follow the process of the hydrogen peroxide destruction of both resin beads and model systems such as water soluble calixarenes. 2) Use of various physical and chemical techniques in an attempt to improve the overall efficiency of hydrogen peroxide utilization. Examples of these techniques include UV irradiation, both with and without a photocatalyst, oxygen carrying molecules and various stirring regimes.
Resumo:
This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A-- water bath at 74ºC for 9 h; B-- water bath at 74ºC for 8 h and temperature increased to 100ºC for 1 h; C-- water bath at 74ºC for 2 h and temperature increased to 100ºC for 1 h;; and D-- water bath at 120ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 sec was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.
Resumo:
This study investigated the effect of simulated microwave disinfection (SMD) on the linear dimensional changes, hardness and impact strength of acrylic resins under different polymerization cycles. Metal dies with referential points were embedded in flasks with dental stone. Samples of Classico and Vipi acrylic resins were made following the manufacturers' recommendations. The assessed polymerization cycles were: A) water bath at 74 ºC for 9 h; B) water bath at 74 ºC for 8 h and temperature increased to 100 ºC for 1 h; C) water bath at 74 ºC for 2 h and temperature increased to 100 ºC for 1 h; and D) water bath at 120 ºC and pressure of 60 pounds. Linear dimensional distances in length and width were measured after SMD and water storage at 37 ºC for 7 and 30 days using an optical microscope. SMD was carried out with the samples immersed in 150 mL of water in an oven (650 W for 3 min). A load of 25 gf for 10 s was used in the hardness test. Charpy impact test was performed with 40 kpcm. Data were submitted to ANOVA and Tukey's test (5%). The Classico resin was dimensionally steady in length in the A and D cycles for all periods, while the Vipi resin was steady in the A, B and C cycles for all periods. The Classico resin was dimensionally steady in width in the C and D cycles for all periods, and the Vipi resin was steady in all cycles and periods. The hardness values for Classico resin were steady in all cycles and periods, while the Vipi resin was steady only in the C cycle for all periods. Impact strength values for Classico resin were steady in the A, C and D cycles for all periods, while Vipi resin was steady in all cycles and periods. SMD promoted different effects on the linear dimensional changes, hardness and impact strength of acrylic resins submitted to different polymerization cycles when after SMD and water storage were considered.
Resumo:
Purified genomic DNA can be difficult to obtain from some plant species because of the presence of impurities such as polysaccharides, which are often co-extracted with DNA. In this study, we developed a fast, simple, and low-cost protocol for extracting DNA from plants containing high levels of secondary metabolites. This protocol does not require the use of volatile toxic reagents such as mercaptoethanol, chloroform, or phenol and allows the extraction of high-quality DNA from wild and cultivated tropical species.
Resumo:
The aim of this study was to evaluate the microtensile bond strength (µTBS) of two substrates (enamel and dentin) considering two study factors: type of composite resin [methacrylate-based (Filtek Supreme) or silorane-based (Filtek LS)] and aging time (24 h or 3 months). Twenty human molars were selected and divided into 2 groups (n=10) considering two dental substrates, enamel or dentin. The enamel and dentin of each tooth was divided into two halves separated by a glass plate. Each tooth was restored using both tested composite resins following the manufacturer's instructions. The samples were sectioned, producing 4 sticks for each composite resin. Half of them were tested after 24 h and half after 3 months. µTBS testing was carried out at 0.05 mm/s. Data were analyzed by three-way ANOVA and Tukey's HSD tests at α=0.05. Significant differences between composite resins and substrates were found (p<0.05), but no statistically significant difference was found for aging time and interactions among study factors. The methacrylate-based resin showed higher µTBS than the silorane-based resin. The µTBS for enamel was significantly higher than for dentin, irrespective of the composite resin and storage time. Three months of storage was not sufficient time to cause degradation of the bonding interaction of either of the composite resins to enamel and dentin.
Resumo:
Candida biofilms on denture surfaces are substantially reduced after a single immersion in denture cleanser. However, whether this effect is maintained when dentures are immersed in cleanser daily is unclear. The purpose of this study was to evaluate the effect of the daily use of enzymatic cleanser on Candida albicans biofilms on denture base materials. The surfaces of polyamide and poly(methyl methacrylate) resin specimens (n=54) were standardized and divided into 12 groups (n=9 per group), according to study factors (material type, treatment type, and periods of treatment). Candida albicans biofilms were allowed to form over 72 hours, after which the specimens were treated with enzymatic cleanser once daily for 1, 4, or 7 days. Thereafter, residual biofilm was ultrasonically removed and analyzed for viable cells (colony forming units/mm(2)) and enzymatic activity (phospholipase, aspartyl-protease, and hemolysin). Factors that interfered with the response variables were analyzed by 3-way ANOVA with the Holm-Sidak multiple comparison method (α=.05). Polyamide resin presented more viable cells of Candida albicans (P<.001) for both the evaluated treatment types and periods. Although enzymatic cleansing significantly (P<.001) reduced viable cells, daily use did not maintain this reduction (P<.001). Phospholipase activity significantly increased with time (P<.001) for both materials and treatments. However, poly(methyl methacrylate) based resin (P<.001) and enzymatic cleansing treatment (P<.001) contributed to lower phospholipase activity. Aspartyl-protease and hemolysin activities were not influenced by study factors (P>.05). Although daily use of an enzymatic cleanser reduced the number of viable cells and phospholipase activity, this treatment was not effective against residual biofilm over time.