984 resultados para Residential electricity simulation
Resumo:
One of the most common Demand Side Management programs consists of Time-of-Use (TOU) tariffs, where consumers are charged differently depending on the time of the day when they make use of energy services. This paper assesses the impacts of TOU tariffs on a dataset of residential users from the Province of Trento in Northern Italy in terms of changes in electricity demand, price savings, peak load shifting and peak electricity demand at substation level. Findings highlight that TOU tariffs bring about higher average electricity consumption and lower payments by consumers. A significant level of load shifting takes place for morning peaks. However, issues with evening peaks are not resolved. Finally, TOU tariffs lead to increases in electricity demand for substations at peak time.
Resumo:
The growing energy consumption in the residential sector represents about 30% of global demand. This calls for Demand Side Management solutions propelling change in behaviors of end consumers, with the aim to reduce overall consumption as well as shift it to periods in which demand is lower and where the cost of generating energy is lower. Demand Side Management solutions require detailed knowledge about the patterns of energy consumption. The profile of electricity demand in the residential sector is highly correlated with the time of active occupancy of the dwellings; therefore in this study the occupancy patterns in Spanish properties was determined using the 2009–2010 Time Use Survey (TUS), conducted by the National Statistical Institute of Spain. The survey identifies three peaks in active occupancy, which coincide with morning, noon and evening. This information has been used to input into a stochastic model which generates active occupancy profiles of dwellings, with the aim to simulate domestic electricity consumption. TUS data were also used to identify which appliance-related activities could be considered for Demand Side Management solutions during the three peaks of occupancy.
Resumo:
Residential electricity demand in most European countries accounts for a major proportion of overall electricity consumption. The timing of residential electricity demand has significant impacts on carbon emissions and system costs. This paper reviews the data and methods used in time use studies in the context of residential electricity demand modelling. It highlights key issues which are likely to become more topical for research on the timing of electricity demand following the roll-out of smart metres.
Resumo:
Peak residential electricity demand takes place when people conduct simultaneous activities at specific times of the day. Social practices generate patterns of demand and can help understand why, where, with whom and when energy services are used at peak time. The aim of this work is to make use of recent UK time use and locational data to better understand: (i) how a set of component indices on synchronisation, variation, sharing and mobility indicate flexibility to shift demand; and (ii) the links between people’s activities and peaks in greenhouse gases’ intensities. The analysis is based on a recent UK time use dataset, providing 1 minute interval data from GPS devices and 10 minute data from diaries and questionnaires for 175 data days comprising 153 respondents. Findings show how greenhouse gases’ intensities and flexibility to shift activities vary throughout the day. Morning peaks are characterised by high levels of synchronisation, shared activities and occupancy, with low variation of activities. Evening peaks feature low synchronisation, and high spatial mobility variation of activities. From a network operator perspective, the results indicate that periods with lower flexibility may be prone to more significant local network loads due to the synchronization of electricity-demanding activities.
Resumo:
Recent research and policy studies on the low-carbon future highlight the importance of flexible electricity demand. This might be problematic particularly for residential electricity demand, which is related to simultaneous consumers’ practices in the household. This paper analyses issues of simultaneity in residential electricity demand in Spain. It makes use of the 2011 Spanish Time Use Survey data with comparisons from the previous Spanish Time Use Survey and the Harmonised European Time Use Surveys. Findings show that media activities are associated the highest levels of continuity and simultaneity, particularly in the early and late parts of the evening during weekdays.
Resumo:
Throughout recent years, there has been an increase in the population size, as well as a fast economic growth, which has led to an increase of the energy demand that comes mainly from fossil fuels. In order to reduce the ecological footprint, governments have implemented sustainable measures and it is expected that by 2035 the energy produced from renewable energy sources, such as wind and solar would be responsible for one-third of the energy produced globally. However, since the energy produced from renewable sources is governed by the availability of the respective primary energy source there is often a mismatch between production and demand, which could be solved by adding flexibility on the demand side through demand response (DR). DR programs influence the end-user electricity usage by changing its cost along the time. Under this scenario the user needs to estimate the energy demand and on-site production in advance to plan its energy demand according to the energy price. This work focuses on the development of an agent-based electrical simulator, capable of: (a) estimating the energy demand and on-site generation with a 1-min time resolution for a 24-h period, (b) calculating the energy price for a given scenario, (c) making suggestions on how to maximize the usage of renewable energy produced on-site and to lower the electricity costs by rescheduling the use of certain appliances. The results show that this simulator allows reducing the energy bill by 11% and almost doubling the use of renewable energy produced on-site.
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
In this work project I propose an innovative service – Electricity Feedback with Smart Meters through TV – to be considered as an additional test in the residential electricity use feedback trials currently being conducted in EDP’s InovCity project. My proposal is based on relevant past and current research studies, both Portuguese and international, which explain and support the proposed operationalization and characteristics of this new service. Furthermore, a careful analysis about the segmentation framing, the best market entry strategy and the consequences of adopting a joint venture with cable TV operators, is also provided. Finally, I present a SWOT analysis and highlight critical issues affecting the effectiveness of feedback which require further research.
Resumo:
For decades regulators in the energy sector have focused on facilitating the maximisation of energy supply in order to meet demand through liberalisation and removal of market barriers. The debate on climate change has emphasised a new type of risk in the balance between energy demand and supply: excessively high energy demand brings about significantly negative environmental and economic impacts. This is because if a vast number of users is consuming electricity at the same time, energy suppliers have to activate dirty old power plants with higher greenhouse gas emissions and higher system costs. The creation of a Europe-wide electricity market requires a systematic investigation into the risk of aggregate peak demand. This paper draws on the e-Living Time-Use Survey database to assess the risk of aggregate peak residential electricity demand for European energy markets. Findings highlight in which countries and for what activities the risk of aggregate peak demand is greater. The discussion highlights which approaches energy regulators have started considering to convince users about the risks of consuming too much energy during peak times. These include ‘nudging’ approaches such as the roll-out of smart meters, incentives for shifting the timing of energy consumption, differentiated time-of-use tariffs, regulatory financial incentives and consumption data sharing at the community level.
Resumo:
Dynamic electricity pricing can produce efficiency gains in the electricity sector and help achieve energy policy goals such as increasing electric system reliability and supporting renewable energy deployment. Retail electric companies can offer dynamic pricing to residential electricity customers via smart meter-enabled tariffs that proxy the cost to procure electricity on the wholesale market. Current investments in the smart metering necessary to implement dynamic tariffs show policy makers’ resolve for enabling responsive demand and realizing its benefits. However, despite these benefits and the potential bill savings these tariffs can offer, adoption among residential customers remains at low levels. Using a choice experiment approach, this paper seeks to determine whether disclosing the environmental and system benefits of dynamic tariffs to residential customers can increase adoption. Although sampling and design issues preclude wide generalization, we found that our environmentally conscious respondents reduced their required discount to switch to dynamic tariffs around 10% in response to higher awareness of environmental and system benefits. The perception that shifting usage is easy to do also had a significant impact, indicating the potential importance of enabling technology. Perhaps the targeted communication strategy employed by this study is one way to increase adoption and achieve policy goals.
Resumo:
This paper proposes a process for the classifi cation of new residential electricity customers. The current state of the art is extended by using a combination of smart metering and survey data and by using model-based feature selection for the classifi cation task. Firstly, the normalized representative consumption profi les of the population are derived through the clustering of data from households. Secondly, new customers are classifi ed using survey data and a limited amount of smart metering data. Thirdly, regression analysis and model-based feature selection results explain the importance of the variables and which are the drivers of diff erent consumption profi les, enabling the extraction of appropriate models. The results of a case study show that the use of survey data signi ficantly increases accuracy of the classifi cation task (up to 20%). Considering four consumption groups, more than half of the customers are correctly classifi ed with only one week of metering data, with more weeks the accuracy is signifi cantly improved. The use of model-based feature selection resulted in the use of a signifi cantly lower number of features allowing an easy interpretation of the derived models.
Resumo:
Mestrado em Engenharia Electrotécnica e de Computadores
Resumo:
Dissertação de Mestrado em Ciências Económicas e Empresariais
Resumo:
A Work Project, presented as part of the requirements for the Award of a Masters Degree in Management from the NOVA – School of Business and Economics
Resumo:
In this work I propose an additional test to be implemented in EDP’s residential electricity use feedback trials, under InovCity’s project scope. The proposed product to be tested consists of an interface between the smart meter and the television, through a set-top box. I provide a theoretical framework of the importance of feedback, an analysis of results from past studies involving smart metering, and a detailed description of my proposal. The results of a self-developed questionnaire related to the proposal and segmentation issues are also analyzed. Finally, general conclusions are drawn and potential future improvements and challenges are presented.