993 resultados para Reserve Selection
Resumo:
Although data quality and weighting decisions impact the outputs of reserve selection algorithms, these factors have not been closely studied. We examine these methodological issues in the use of reserve selection algorithms by comparing: (1) quality of input data and (2) use of different weighting methods for prioritizing among species. In 2003, the government of Madagascar, a global biodiversity hotspot, committed to tripling the size of its protected area network to protect 10% of the country’s total land area. We apply the Zonation reserve selection algorithm to distribution data for 52 lemur species to identify priority areas for the expansion of Madagascar’s reserve network. We assess the similarity of the areas selected, as well as the proportions of lemur ranges protected in the resulting areas when different forms of input data were used: extent of occurrence versus refined extent of occurrence. Low overlap between the areas selected suggests that refined extent of occurrence data are highly desirable, and to best protect lemur species, we recommend refining extent of occurrence ranges using habitat and altitude limitations. Reserve areas were also selected for protection based on three different species weighting schemes, resulting in marked variation in proportional representation of species among the IUCN Red List of Threatened Species extinction risk categories. This result demonstrates that assignment of species weights influences whether a reserve network prioritizes maximizing overall species protection or maximizing protection of the most threatened species.
Resumo:
Ongoing habitat loss and fragmentation threaten much of the biodiversity that we know today. As such, conservation efforts are required if we want to protect biodiversity. Conservation budgets are typically tight, making the cost-effective selection of protected areas difficult. Therefore, reserve design methods have been developed to identify sets of sites, that together represent the species of conservation interest in a cost-effective manner. To be able to select reserve networks, data on species distributions is needed. Such data is often incomplete, but species habitat distribution models (SHDMs) can be used to link the occurrence of the species at the surveyed sites to the environmental conditions at these locations (e.g. climatic, vegetation and soil conditions). The probability of the species occurring at unvisited location is next predicted by the model, based on the environmental conditions of those sites. The spatial configuration of reserve networks is important, because habitat loss around reserves can influence the persistence of species inside the network. Since species differ in their requirements for network configuration, the spatial cohesion of networks needs to be species-specific. A way to account for species-specific requirements is to use spatial variables in SHDMs. Spatial SHDMs allow the evaluation of the effect of reserve network configuration on the probability of occurrence of the species inside the network. Even though reserves are important for conservation, they are not the only option available to conservation planners. To enhance or maintain habitat quality, restoration or maintenance measures are sometimes required. As a result, the number of conservation options per site increases. Currently available reserve selection tools do however not offer the ability to handle multiple, alternative options per site. This thesis extends the existing methodology for reserve design, by offering methods to identify cost-effective conservation planning solutions when multiple, alternative conservation options are available per site. Although restoration and maintenance measures are beneficial to certain species, they can be harmful to other species with different requirements. This introduces trade-offs between species when identifying which conservation action is best applied to which site. The thesis describes how the strength of such trade-offs can be identified, which is useful for assessing consequences of conservation decisions regarding species priorities and budget. Furthermore, the results of the thesis indicate that spatial SHDMs can be successfully used to account for species-specific requirements for spatial cohesion - in the reserve selection (single-option) context as well as in the multi-option context. Accounting for the spatial requirements of multiple species and allowing for several conservation options is however complicated, due to trade-offs in species requirements. It is also shown that spatial SHDMs can be successfully used for gaining information on factors that drive a species spatial distribution. Such information is valuable to conservation planning, as better knowledge on species requirements facilitates the design of networks for species persistence. This methods and results described in this thesis aim to improve species probabilities of persistence, by taking better account of species habitat and spatial requirements. Many real-world conservation planning problems are characterised by a variety of conservation options related to protection, restoration and maintenance of habitat. Planning tools therefore need to be able to incorporate multiple conservation options per site, in order to continue the search for cost-effective conservation planning solutions. Simultaneously, the spatial requirements of species need to be considered. The methods described in this thesis offer a starting point for combining these two relevant aspects of conservation planning.
Resumo:
With marine biodiversity conservation the primary goal for reserve planning initiatives, a site's conservation potential is typically evaluated on the basis of the biological and physical features it contains. By comparison, socio-economic information is seldom a formal consideration of the reserve system design problem and generally limited to an assessment of threats, vulnerability or compatibility with surrounding uses. This is perhaps surprising given broad recognition that the success of reserve establishment is highly dependent on widespread stakeholder and community support. Using information on the spatial distribution and intensity of commercial rock lobster catch in South Australia, we demonstrate the capacity of mathematical reserve selection procedures to integrate socio-economic and biophysical information for marine reserve system design. Analyses of trade-offs highlight the opportunities to design representative, efficient and practical marine reserve systems that minimise potential loss to commercial users. We found that the objective of minimising the areal extent of the reserve system was barely compromised by incorporating economic design constraints. With a small increase in area (< 3%) and boundary length (< 10%), the economic impact of marine reserves on the commercial rock lobster fishery was reduced by more than a third. We considered also how a reserve planner might prioritise conservation areas using information on a planning units selection frequency. We found that selection frequencies alone were not a reliable guide for the selection of marine reserve systems, but could be used with approaches such as summed irreplaceability to direct conservation effort for efficient marine reserve design.
Resumo:
Socioeconomic considerations should have an important place in reserve design, Systematic reserve-selection tools allow simultaneous optimization for ecological objectives while minimizing costs but are seldom used to incorporate socioeconomic costs in the reserve-design process. The sensitivity of this process to biodiversity data resolution has been studied widely but the issue of socioeconomic data resolution has not previously been considered. We therefore designed marine reserves for biodiversity conservation with the constraint of minimizing commercial fishing revenue losses and investigated how economic data resolution affected the results. Incorporating coarse-resolution economic data from official statistics generated reserves that were only marginally less costly to the fishery than those designed with no attempt to minimize economic impacts. An intensive survey yielded fine-resolution data that, when incorporated in the design process, substantially reduced predicted fishery losses. Such an approach could help minimize fisher displacement because the least profitable grounds are selected for the reserve. Other work has shown that low-resolution biodiversity data can lead to underestimation of the conservation value of some sites, and a risk of overlooking the most valuable areas, and we have similarly shown that low-resolution economic data can cause underestimation of the profitability of some sites and a risk of inadvertently including these in the reserve. Detailed socioeconomic data are therefore an essential input for the design of cost-effective reserve networks.
Resumo:
Although the aim of conservation planning is the persistence of biodiversity, current methods trade-off ecological realism at a species level in favour of including multiple species and landscape features. For conservation planning to be relevant, the impact of landscape configuration on population processes and the viability of species needs to be considered. We present a novel method for selecting reserve systems that maximize persistence across multiple species, subject to a conservation budget. We use a spatially explicit metapopulation model to estimate extinction risk, a function of the ecology of the species and the amount, quality and configuration of habitat. We compare our new method with more traditional, area-based reserve selection methods, using a ten-species case study, and find that the expected loss of species is reduced 20-fold. Unlike previous methods, we avoid designating arbitrary weightings between reserve size and configuration; rather, our method is based on population processes and is grounded in ecological theory.
Resumo:
Data on the occurrence of species are widely used to inform the design of reserve networks. These data contain commission errors (when a species is mistakenly thought to be present) and omission errors (when a species is mistakenly thought to be absent), and the rates of the two types of error are inversely related. Point locality data can minimize commission errors, but those obtained from museum collections are generally sparse, suffer from substantial spatial bias and contain large omission errors. Geographic ranges generate large commission errors because they assume homogenous species distributions. Predicted distribution data make explicit inferences on species occurrence and their commission and omission errors depend on model structure, on the omission of variables that determine species distribution and on data resolution. Omission errors lead to identifying networks of areas for conservation action that are smaller than required and centred on known species occurrences, thus affecting the comprehensiveness, representativeness and efficiency of selected areas. Commission errors lead to selecting areas not relevant to conservation, thus affecting the representativeness and adequacy of reserve networks. Conservation plans should include an estimation of commission and omission errors in underlying species data and explicitly use this information to influence conservation planning outcomes.
Resumo:
Species extinctions and the deterioration of other biodiversity features worldwide have led to the adoption of systematic conservation planning in many regions of the world. As a consequence, various software tools for conservation planning have been developed over the past twenty years. These, tools implement algorithms designed to identify conservation area networks for the representation and persistence of biodiversity features. Budgetary, ethical, and other sociopolitical constraints dictate that the prioritized sites represent biodiversity with minimum impact on human interests. Planning tools are typically also used to satisfy these criteria. This chapter reviews both the concepts and technical choices that underlie the development of these tools. Conservation planning problems can be formulated as optimization problems, and we evaluate the suitability of different algorithms for their solution. Finally, we also review some key issues associated with the use of these tools, such as computational efficiency, the effectiveness of taxa and abiotic parameters at choosing surrogates for biodiversity, the process of setting explicit targets of representation for biodiversity surrogates, and
Resumo:
A number of systematic conservation planning tools are available to aid in making land use decisions. Given the increasing worldwide use and application of reserve design tools, including measures of site irreplaceability, it is essential that methodological differences and their potential effect on conservation planning outcomes are understood. We compared the irreplaceability of sites for protecting ecosystems within the Brigalow Belt Bioregion, Queensland, Australia, using two alternative reserve system design tools, Marxan and C-Plan. We set Marxan to generate multiple reserve systems that met targets with minimal area; the first scenario ignored spatial objectives, while the second selected compact groups of areas. Marxan calculates the irreplaceability of each site as the proportion of solutions in which it occurs for each of these set scenarios. In contrast, C-Plan uses a statistical estimate of irreplaceability as the likelihood that each site is needed in all combinations of sites that satisfy the targets. We found that sites containing rare ecosystems are almost always irreplaceable regardless of the method. Importantly, Marxan and C-Plan gave similar outcomes when spatial objectives were ignored. Marxan with a compactness objective defined twice as much area as irreplaceable, including many sites with relatively common ecosystems. However, targets for all ecosystems were met using a similar amount of area in C-Plan and Marxan, even with compactness. The importance of differences in the outcomes of using the two methods will depend on the question being addressed; in general, the use of two or more complementary tools is beneficial.
Resumo:
The rapid global loss of biodiversity has led to a proliferation of systematic conservation planning methods. In spite of their utility and mathematical sophistication, these methods only provide approximate solutions to real-world problems where there is uncertainty and temporal change. The consequences of errors in these solutions are seldom characterized or addressed. We propose a conceptual structure for exploring the consequences of input uncertainty and oversimpli?ed approximations to real-world processes for any conservation planning tool or strategy. We then present a computational framework based on this structure to quantitatively model species representation and persistence outcomes across a range of uncertainties. These include factors such as land costs, landscape structure, species composition and distribution, and temporal changes in habitat. We demonstrate the utility of the framework using several reserve selection methods including simple rules of thumb and more sophisticated tools such as Marxan and Zonation. We present new results showing how outcomes can be strongly affected by variation in problem characteristics that are seldom compared across multiple studies. These characteristics include number of species prioritized, distribution of species richness and rarity, and uncertainties in the amount and quality of habitat patches. We also demonstrate how the framework allows comparisons between conservation planning strategies and their response to error under a range of conditions. Using the approach presented here will improve conservation outcomes and resource allocation by making it easier to predict and quantify the consequences of many different uncertainties and assumptions simultaneously. Our results show that without more rigorously generalizable results, it is very dif?cult to predict the amount of error in any conservation plan. These results imply the need for standard practice to include evaluating the effects of multiple real-world complications on the behavior of any conservation planning method.
Resumo:
Ecological coherence is a multifaceted conservation objective that includes some potentially conflicting concepts. These concepts include the extent to which the network maximises diversity (including genetic diversity) and the extent to which protected areas interact with non-reserve locations. To examine the consequences of different selection criteria, the preferred location to complement protected sites was examined using samples taken from four locations around each of two marine protected areas: Strangford Lough and Lough Hyne, Ireland. Three different measures of genetic distance were used: FST, Dest and a measure of allelic dissimilarity, along with a direct assessment of the total number of alleles in different candidate networks. Standardized site scores were used for comparisons across methods and selection criteria. The average score for Castlehaven, a site relatively close to Lough Hyne, was highest, implying that this site would capture the most genetic diversity while ensuring highest degree of interaction between protected and unprotected sites. Patterns around Strangford Lough were more ambiguous, potentially reflecting the weaker genetic structure around this protected area in comparison to Lough Hyne. Similar patterns were found across species with different dispersal capacities, indicating that methods based on genetic distance could be used to help maximise ecological coherence in reserve networks. ⺠Ecological coherence is a key component of marine protected area network design. ⺠Coherence contains a number of competing concepts. ⺠Genetic information from field populations can help guide assessments of coherence. ⺠Average choice across different concepts of coherence was consistent among species. ⺠Measures can be combined to compare the coherence of different network designs.
Resumo:
Changes in species composition is an important process in many ecosystems but rarely considered in systematic reserve site selection. To test the influence of temporal variability in species composition on the establishment of a reserve network, we compared network configurations based on species data of small mammals and frogs sampled during two consecutive years in a fragmented Atlantic Forest landscape (SE Brazil). Site selection with simulated annealing was carried out with the datasets of each single year and after merging the datasets of both years. Site selection resulted in remarkably divergent network configurations. Differences are reflected in both the identity of the selected fragments and in the amount of flexibility and irreplaceability in network configuration. Networks selected when data for both years were merged did not include all sites that were irreplaceable in one of the 2 years. Results of species number estimation revealed that significant changes in the composition of the species community occurred. Hence, temporal variability of community composition should be routinely tested and considered in systematic reserve site selection in dynamic systems.
Resumo:
From 5 May 2003 to early June 2005, nest site selection of Black-necked Cranes Grits nigricollis was studied at the Ruoergai Wetland Nature Reserve (RWNR), an important breeding area for the species in China. Results showed that the crane nests only in we
Resumo:
High-speed networks, such as ATM networks, are expected to support diverse Quality of Service (QoS) constraints, including real-time QoS guarantees. Real-time QoS is required by many applications such as those that involve voice and video communication. To support such services, routing algorithms that allow applications to reserve the needed bandwidth over a Virtual Circuit (VC) have been proposed. Commonly, these bandwidth-reservation algorithms assign VCs to routes using the least-loaded concept, and thus result in balancing the load over the set of all candidate routes. In this paper, we show that for such reservation-based protocols|which allow for the exclusive use of a preset fraction of a resource's bandwidth for an extended period of time-load balancing is not desirable as it results in resource fragmentation, which adversely affects the likelihood of accepting new reservations. In particular, we show that load-balancing VC routing algorithms are not appropriate when the main objective of the routing protocol is to increase the probability of finding routes that satisfy incoming VC requests, as opposed to equalizing the bandwidth utilization along the various routes. We present an on-line VC routing scheme that is based on the concept of "load profiling", which allows a distribution of "available" bandwidth across a set of candidate routes to match the characteristics of incoming VC QoS requests. We show the effectiveness of our load-profiling approach when compared to traditional load-balancing and load-packing VC routing schemes.
Resumo:
Reproductive ageing is linked to the depletion of ovarian primordial follicles, which causes an irreversible change to ovarian cellular function and the capacity to reproduce. The current study aimed to profile the expression of bone morphogenetic protein receptor, (BMPR1B) in 53 IVF patients exhibiting different degrees of primordial follicle depletion. The granulosa cell receptor density was measured in 403 follicles via flow cytometry. A decline in BMPR1B density occurred at the time of dominant follicle selection and during the terminal stage of folliculogenesis in the 23-30 y good ovarian reserve patients. The 40+ y poor ovarian reserve patients experienced a reversal of this pattern. The results demonstrate an association between age-induced depletion of the ovarian reserve and BMPR1B receptor density at the two critical time points of dominant follicle selection and pre-ovulatory follicle maturation. Dysregulation of BMP receptor signalling may inhibit the normal steroidogenic differentiation required for maturation in older patients.
Resumo:
This thesis presents a creative and practical approach to dealing with the problem of selection bias. Selection bias may be the most important vexing problem in program evaluation or in any line of research that attempts to assert causality. Some of the greatest minds in economics and statistics have scrutinized the problem of selection bias, with the resulting approaches – Rubin’s Potential Outcome Approach(Rosenbaum and Rubin,1983; Rubin, 1991,2001,2004) or Heckman’s Selection model (Heckman, 1979) – being widely accepted and used as the best fixes. These solutions to the bias that arises in particular from self selection are imperfect, and many researchers, when feasible, reserve their strongest causal inference for data from experimental rather than observational studies. The innovative aspect of this thesis is to propose a data transformation that allows measuring and testing in an automatic and multivariate way the presence of selection bias. The approach involves the construction of a multi-dimensional conditional space of the X matrix in which the bias associated with the treatment assignment has been eliminated. Specifically, we propose the use of a partial dependence analysis of the X-space as a tool for investigating the dependence relationship between a set of observable pre-treatment categorical covariates X and a treatment indicator variable T, in order to obtain a measure of bias according to their dependence structure. The measure of selection bias is then expressed in terms of inertia due to the dependence between X and T that has been eliminated. Given the measure of selection bias, we propose a multivariate test of imbalance in order to check if the detected bias is significant, by using the asymptotical distribution of inertia due to T (Estadella et al. 2005) , and by preserving the multivariate nature of data. Further, we propose the use of a clustering procedure as a tool to find groups of comparable units on which estimate local causal effects, and the use of the multivariate test of imbalance as a stopping rule in choosing the best cluster solution set. The method is non parametric, it does not call for modeling the data, based on some underlying theory or assumption about the selection process, but instead it calls for using the existing variability within the data and letting the data to speak. The idea of proposing this multivariate approach to measure selection bias and test balance comes from the consideration that in applied research all aspects of multivariate balance, not represented in the univariate variable- by-variable summaries, are ignored. The first part contains an introduction to evaluation methods as part of public and private decision process and a review of the literature of evaluation methods. The attention is focused on Rubin Potential Outcome Approach, matching methods, and briefly on Heckman’s Selection Model. The second part focuses on some resulting limitations of conventional methods, with particular attention to the problem of how testing in the correct way balancing. The third part contains the original contribution proposed , a simulation study that allows to check the performance of the method for a given dependence setting and an application to a real data set. Finally, we discuss, conclude and explain our future perspectives.