782 resultados para Research needs
Resumo:
This paper comprehensively reviews recent developments in modeling lane-changing behavior. The major lane changing models in the literature are categorized into two groups: models that aim to capture the lane changing decision-making process, and models that aim to quantify the impact of lane changing behavior on surrounding vehicles. The methodologies and important features (including their limitations) of representative models in each category are outlined and discussed. Future research needs are determined.
Resumo:
Ross River virus (RRV) is the most common vector-borne disease in Australia. It is vitally important to make appropriate projections on the future spread of RRV under various climate change scenarios because such information is essential for policy-makers to identify vulnerable communities and to better manage RRV epidemics. However, there are many methodological challenges in projecting the impact of climate change on the transmission of RRV disease. This study critically examined the methodological issues and proposed possible solutions. A literature search was conducted between January and October 2012, using the electronic databases Medline, Web of Science and PubMed. Nineteen relevant papers were identified. These studies demonstrate that key challenges for projecting future climate change on RRV disease include: (1) a complex ecology (e.g. many mosquito vectors, immunity, heterogeneous in both time and space); (2) unclear interactions between social and environmental factors; and (3) uncertainty in climate change modelling and socioeconomic development scenarios. Future risk assessments of climate change will ultimately need to better understand the ecology of RRV disease and to integrate climate change scenarios with local socioeconomic and environmental factors, in order to develop effective adaptation strategies to prevent or reduce RRV transmission.
Resumo:
There has been an intense debate about climatic impacts on the transmission of malaria. It is vitally important to accurately project future impacts of climate change on malaria to support effective policy–making and intervention activity concerning malaria control and prevention. This paper critically reviewed the published literature and examined both key findings and methodological issues in projecting future impacts of climate change on malaria transmission. A literature search was conducted using the electronic databases MEDLINE, Web of Science and PubMed. The projected impacts of climate change on malaria transmission were spatially heterogeneous and somewhat inconsistent. The variation in results may be explained by the interaction of climatic factors and malaria transmission cycles, variations in projection frameworks and uncertainties of future socioecological (including climate) changes. Current knowledge gaps are identified, future research directions are proposed and public health implications are assessed. Improving the understanding of the dynamic effects of climate on malaria transmission cycles, the advancement of modelling techniques and the incorporation of uncertainties in future socioecological changes are critical factors for projecting the impact of climate change on malaria transmission.
Resumo:
Over the past decades there has been a considerable development in the modeling of car-following (CF) behavior as a result of research undertaken by both traffic engineers and traffic psychologists. While traffic engineers seek to understand the behavior of a traffic stream, traffic psychologists seek to describe the human abilities and errors involved in the driving process. This paper provides a comprehensive review of these two research streams. It is necessary to consider human-factors in {CF} modeling for a more realistic representation of {CF} behavior in complex driving situations (for example, in traffic breakdowns, crash-prone situations, and adverse weather conditions) to improve traffic safety and to better understand widely-reported puzzling traffic flow phenomena, such as capacity drop, stop-and-go oscillations, and traffic hysteresis. While there are some excellent reviews of {CF} models available in the literature, none of these specifically focuses on the human factors in these models. This paper addresses this gap by reviewing the available literature with a specific focus on the latest advances in car-following models from both the engineering and human behavior points of view. In so doing, it analyses the benefits and limitations of various models and highlights future research needs in the area.
Resumo:
Background Climate change may affect mortality associated with air pollutants, especially for fine particulate matter (PM2.5) and ozone (O3). Projection studies of such kind involve complicated modelling approaches with uncertainties. Objectives We conducted a systematic review of researches and methods for projecting future PM2.5-/O3-related mortality to identify the uncertainties and optimal approaches for handling uncertainty. Methods A literature search was conducted in October 2013, using the electronic databases: PubMed, Scopus, ScienceDirect, ProQuest, and Web of Science. The search was limited to peer-reviewed journal articles published in English from January 1980 to September 2013. Discussion Fifteen studies fulfilled the inclusion criteria. Most studies reported that an increase of climate change-induced PM2.5 and O3 may result in an increase in mortality. However, little research has been conducted in developing countries with high emissions and dense populations. Additionally, health effects induced by PM2.5 may dominate compared to those caused by O3, but projection studies of PM2.5-related mortality are fewer than those of O3-related mortality. There is a considerable variation in approaches of scenario-based projection researches, which makes it difficult to compare results. Multiple scenarios, models and downscaling methods have been used to reduce uncertainties. However, few studies have discussed what the main source of uncertainties is and which uncertainty could be most effectively reduced. Conclusions Projecting air pollution-related mortality requires a systematic consideration of assumptions and uncertainties, which will significantly aid policymakers in efforts to manage potential impacts of PM2.5 and O3 on mortality in the context of climate change.
Resumo:
Baldwin, Virginia (2003) "A Study of Interdisciplinary Research Needs: Results from Input of Faculty in Six Engineering Departments in Prioritizing Serial Subscriptions," American Society for Engineering Education Conference, June 23, 2003, Nashville, TN,
Resumo:
Eosinophils are blood cells that are often found in high numbers in the tissues of allergic conditions and helminthic parasite infections. The pathophysiologic roles that eosinophils may serve in other human "eosinophil-associated" diseases remain obscure.