987 resultados para Reproductive systems
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The aim of this study was to determine the consequent reproductive developmental and immunotoxic effects due to exposure to fenvalerate during pregnancy and lactation in male offspring of maternal-treated rats. Pregnant rats were treated daily by oral gavage with 40 or 80 mg/kg of fenvalerate or corn oil (vehicle, control), from d 12 of pregnancy to d 21 of lactation. Immune and reproductive developmental effects were assessed in male offspring at postnatal days (PND) 40 (peripuberty), 60 (postpuberty), and 90 (sexual maturity). Treatment with the higher dose (80 mg/kg) resulted in convulsive behavior, hyperexcitability, and mortality in 45% of the dams. Fenvalerate was detected in the fetus due to placental transfer, as well as in pups due to breast-milk ingestion, persisting in male offspring until PND 40 even though pesticide treatment was terminated on PND 20. However, fenvalerate did not produce marked alterations in age of testicular descent to the scrotum and prepucial separation, parameters indicative of puberty initiation. In contrast, at puberty, there was a reduction in testicular weight and sperm production in male offspring of maternal-treated rats. At adulthood, the sperm counts and fertility did not differ between control and treated groups. Testosterone levels were not changed at any time during reproductive development. Similarly, no apparent exposure-related effects were detected in the histological structures of the lymphohematopoietic system. Data indicate that fenvalerate, in this experimental model, interfered with initial development of the male reproductive system, but that these effects on sperm production or fertility did not persist into adulthood. There was no apparent evidence that fenvalerate altered testosterone levels or produced a disruption in male endocrine functions.
Resumo:
Research for acaricides with lower toxicity and impact on the environment has been intensified. An alternative would be the use of natural compounds or of synthetic products in lower concentrations than the ones sold commercially. Thus, this study describes the action of andiroba seed oil on the nuclei of the ovary and synganglion cells of Rhipicephalus sanguineus, and presents an analysis of the nuclear morphology of the nervous system cells of this tick species when exposed to permethrin. The results obtained showed that, although no changes have been observed in the genetic material of the ovary cells exposed to the andiroba oil, this compound, as well as permethrin, has neurotoxic action on the females of this species. The damages caused to the physiology of the synganglion, due to the loss of integrity of the genetic material, would result in the impairment of the metabolism of other systems of R. sanguineus ticks. © 2013 Elsevier Ltd.
Resumo:
Differences in the frequency with which offspring are produced asexually, through self-fertilization and through sexual outcrossing, are a predominant influence on the genetic structure of plant populations. Selfers and asexuals have fewer genotypes within populations than outcrossers with similar allele frequencies, and more genetic diversity in selfers and asexuals is a result of differences among populations than in sexual outcrossers. As a result of reduced levels of diversity, selfers and asexuals may be less able to respond adaptively to changing environments, and because genotypes are not mixed across family lineages, their populations may accumulate deleterious mutations more rapidly. Such differences suggest that selfing and asexual lineages may be evolutionarily short-lived and could explain why they often seem to be of recent origin. Nonetheless, the origin and maintenance of different reproductive modes must be linked to individual-level properties of survival and reproduction. Sexual outcrossers suffer from a cost of outcrossing that arises because they do not contribute to selfed or asexual progeny, whereas selfers and asexuals may contribute to outcrossed progeny. Selfing and asexual reproduction also may allow reproduction when circumstances reduce opportunities for a union of gametes produced by different individuals, a phenomenon known as reproductive assurance. Both the cost of outcrossing and reproductive assurance lead to an over-representation of selfers and asexuals in newly formed progeny, and unless sexual outcrossers are more likely to survive and reproduce, they eventually will be displaced from populations in which a selfing or asexual variant arises.
Resumo:
Neuropeptides, biogenic amines and acetylcholine are expressed abundantly within the nervous systems of parasitic flatworms, and are particularly evident in the innervation of the musculature. Such associations have implicated the nervous system in locomotion, host attachment and reproductive co-ordination. Information on the muscle systems of parasitic flatworms is generally sparse, in particular those muscles associated with the reproductive system, intestinal tract and attachment apparatus. Also, the use of sectioned material has left description of the 3-dimensional organization of the musculature largely unrecorded. Using fluorescein isothiocyanate (FITC)-labelled phalloidin as a site-specific probe for filamentous actin, applied to whole-mount preparations of adult Fasciola hepatica and examined by confocal scanning laser microscopy, the present work reports on the organization of the major muscle systems in this trematode parasite. A highly regular array of outer circular, intermediate longitudinal and inner diagonal fibres distinguishes the body wall musculature, which is also involved in the development of both ventral and oral suckers. Circular fibres dominate the duct walls of the male and female reproductive systems, whereas the muscles of the intestinal tract have a somewhat diffuse arrangement of fibres. An understanding of the structural complexity of the muscle systems of parasitic flatworms is considered as fundamental to the interpretation of results from physiological experiments.
Resumo:
Preclinical toxicity testing in animal models is a cornerstone of the drug development process, yet it is often unable to predict adverse effects and tolerability issues in human subjects. Species-specific responses to investigational drugs have led researchers to utilize human tissues and cells to better estimate human toxicity. Unfortunately, human cell-derived models are imperfect because toxicity is assessed in isolation, removed from the normal physiologic microenvironment. Microphysiological modeling often referred to as 'organ-on-a-chip' or 'human-on-a-chip' places human tissue into a microfluidic system that mimics the complexity of human in vivo physiology, thereby allowing for toxicity testing on several cell types, tissues, and organs within a more biologically relevant environment. Here we describe important concepts when developing a repro-on-a-chip model. The development of female and male reproductive microfluidic systems is critical to sex-based in vitro toxicity and drug testing. This review addresses the biological and physiological aspects of the male and female reproductive systems in vivo and what should be considered when designing a microphysiological human-on-a-chip model. Additionally, interactions between the reproductive tract and other systems are explored, focusing on the impact of factors and hormones produced by the reproductive tract and disease pathophysiology.
Resumo:
The growing demand for quality prawn seed from the farmers‘ and entrepreneurs, coupled with uncertainity of their availability from nature at the appropriate time in required quantities has prompted‘ research on problems connected with prawn seed production. Endocrine control of reproduction in the penaeid shrimp _P_. monodon has been investigated in detail by adopting a comprehensive approach to the problem. The major aspects of the study included in depth investigations of the cytological details of the reproductive and neuroendocrine organs in correlation with the process of gonadal maturation. Based on the conclusions drawn from such ultrastructural studies various endocrine manipulations were carried out to see their effects on gonadal maturation. Besides that studies on the reproductive quality of male P_. monodon and the cryopreservation of spermatophores form a part of the present investigation. The shrimp 3; Inonodon used in the present study were collected from the offshore waters of Cochin, Madras and Mandapam and from the culture ponds of Vypeen Island near Cochin (Kerala) . The entire investigation on the cytological aspects were carried out using standard histological and electron-microscopic methods. Endocrine manipulations and cryopreservation studies is also carried out using the standard methods.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Toward the end of the larval phase (pre-pupa), the reproductive systems of Melipona quadrifasciata and Frieseomelitta varia workers are anatomically similar. Scanning electron microscopy showed that during this developmental phase the right and left ovaries are fused and form a heart-shaped structure located above the midgut. Each ovary is connected to the genital chamber by a long and slender lateral oviduct. During pupal development, the lateral oviducts of workers from both species become extremely reduced due to a drastic process of cell death, as shown by transmission electron microscopy. During the lateral oviduct shortening, their simple columnar epithelial cells show some signs of apoptosis in addition to necrosis. Cell death was characterized by cytoplasmic vesiculation, peculiar accumulation of glycogen, and dilation of cytoplasmic organelles such as mitochondria and rough endoplasmic reticulum. The nuclei, at first irregularly contoured, became swollen, with chromatin flocculation and various areas of condensed chromatin next to the nuclear envelope. At the end of the pupal phase, deep recesses marked the nuclei. At emergence, worker and queen reproductive systems showed marked differences, although reduction in the lateral oviducts was an event occurring in both castes. However, in queens the ovarioles increased in length and the spermatheca was larger than that of workers. At the external anatomical level, the reproductive system of workers and queens could be distinguished in the white- and pink-eyed pupal phase. The metamorphic function of the death of lateral oviduct cells, with consequent oviduct shortening, is discussed in terms of the anatomical reorganization of the reproductive system and of the ventrolateral positioning of adult worker bee ovaries. (C) 2000 Wiley-Liss, Inc.
Resumo:
Ivermectin is one of the most widely used antiparasitic drugs globally. The aim of this study was to evaluate the chronic effects of perinatal exposure to ivermectin on male reproductive parameters in rats. Pregnant rats were treated daily by oral gavage with 0.4 or 1.6 mg kg -1 of ivermectin or vehicle, from gestational day 6 until post-natal day 10. In the adulthood stage, there were significant reductions in the relative testicular weight of rats exposed to the low dose and in relative prostate weight of male rats exposed to the high dose of ivermectin. Furthermore, the animals exposed to the low dose also presented an increased seminal vesicle weight compared to controls. However, neither of the ivermectin doses interfered in daily sperm production, sperm number in testis, or sexual behavior of exposed males. In conclusion, perinatal exposure to ivermectin neither altered the male reproductive system development markedly, nor produced any adverse effects on the parameters evaluated. © 2011 Taylor & Francis.
Resumo:
Duchenne muscular dystrophy is a lethal genetic disease characterized by progressive muscle degeneration that usually had been used the Golden Retriever as a model for studying the disease (GRMD - Golden Retriever Muscular Dystrophy). A total of 16 male dystrophic Golden Retrievers dogs between 5 to 51 months of age were examined in the present study. The animals were classified as dystrophic according to two simultaneous complementary criteria: genotypic analysis and serum creatine kinase levels. The macroscopic abnormalities of the different organs and tissues and histopathological features were described using hematoxylin-eosin. The lesions in the skeletal muscles associated with the digestive problems resulted in cachexia with different intensities in all the dystrophic dogs. Cardiac muscle involvement was found in 87,5% of the GRMD dogs resulting, however, in cardiac failure in only 18,8% of the animals. The musculature of the diaphragm was hypertrophic in all affected animals resulting in progressive respiratory muscle weakness and at later stages in respiratory failure (81,25%). The liver abnormalities found in dystrophic dogs were originated mainly from heart disease and developed progressively. Hyperemia of mucosa and granular material indicated changes in the functioning and emptying of bladder. The germinative lineage cells presented moderate to severe degeneration probably due to degeneration of the scrotum and cremaster muscle which prevented the proper thermo-regulation of the testicle. Our results highlight the fact that there is significant impairment of the cardiac, respiratory and skeletal muscle systems in GRMD dogs since the age of five months. In addition, significant alterations of the gastrointestinal tract, urinary and reproductive systems are indicating the presence of degenerative lesions in the smooth musculature.