994 resultados para Renewable water filters
Resumo:
El presente plan de negocio plantea llevar a cabo un estudio de factibilidad para la implementación de un lavadero ecológico, inicialmente en el campus-sede-norte de la Universidad del Rosario. El proyecto se basa en la utilización de filtros de agua renovable, para su desarrollo se estudió la competencia, la demanda, el segmento y proyecciones financieras.
Resumo:
For countless communities around the world, acquiring access to safe drinking water is a daily challenge which many organizations endeavor to meet. The villages in the interior of Suriname have been the focus of many improved drinking water projects as most communities are without year-round access. Unfortunately, as many as 75% of the systems in Suriname fail within several years of implementation. These communities, scattered along the rivers and throughout the jungle, lack many of the resources required to sustain a centralized water treatment system. However, the centralized system in the village of Bendekonde on the Upper Suriname River has been operational for over 10 years and is often touted by other communities. The Bendekonde system is praised even though the technology does not differ significantly from other failed systems. Many of the water systems that fail in the interior fail due to a lack of resources available to the community to maintain the system. Typically, the more complex a system becomes, so does the demand for additional resources. Alternatives to centralized systems include technologies such as point-of-use water filters, which can greatly reduce the necessity for outside resources. In particular, ceramic point-of-use water filters offer a technology that can be reasonably managed in a low resource setting such as that in the interior of Suriname. This report investigates the appropriateness and effectiveness of ceramic filters constructed with local Suriname clay and compares the treatment effectiveness to that of the Bendekonde system. Results of this study showed that functional filters could be produced from Surinamese clay and that they were more effective, in a controlled laboratory setting, than the field performance of the Bendekonde system for removing total coliform. However, the Bendekonde system was more successful at removing E. coli. In a life-cycle assessment, ceramic water filters manufactured in Suriname and used in homes for a lifespan of 2 years were shown to have lower cumulative energy demand, as well as lower global warming potential than a centralized system similar to that used in Bendekonde.
Resumo:
Water scarcity severely impairs food security and economic prosperity in many countries today. Expected future population changes will, in many countries as well as globally, increase the pressure on available water resources. On the supply side, renewable water resources will be affected by projected changes in precipitation patterns, temperature, and other climate variables. Here we use a large ensemble of global hydrological models (GHMs) forced by five global climate models and the latest greenhouse-gas concentration scenarios (Representative Concentration Pathways) to synthesize the current knowledge about climate change impacts on water resources. We show that climate change is likely to exacerbate regional and global water scarcity considerably. In particular, the ensemble average projects that a global warming of 2 degrees C above present (approximately 2.7 degrees C above preindustrial) will confront an additional approximate 15% of the global population with a severe decrease in water resources and will increase the number of people living under absolute water scarcity (< 500 m(3) per capita per year) by another 40% (according to some models, more than 100%) compared with the effect of population growth alone. For some indicators of moderate impacts, the steepest increase is seen between the present day and 2 degrees C, whereas indicators of very severe impacts increase unabated beyond 2 degrees C. At the same time, the study highlights large uncertainties associated with these estimates, with both global climate models and GHMs contributing to the spread. GHM uncertainty is particularly dominant in many regions affected by declining water resources, suggesting a high potential for improved water resource projections through hydrological model development.
Resumo:
This study aims at assessing the socio-economic and environmental effects of different societal and human development scenarios and climate change in the water-scarce southern and eastern Mediterranean. The study develops a two-stage modelling methodology that includes an econometric analysis for the southern and eastern Mediterranean region as a whole and a detailed, integrated socioecological assessment focusing on Jordan, Syria and Morocco. The results show that water resources will be under increasing stress in future years. In spite of country differences, a future path of sustainable development is possible in the region. Water withdrawals could decrease, preserving renewable water resources and reversing the negative effects on agricultural production and rural society. This, however, requires a combination across the region of technical, managerial, economic, social and institutional changes that together foster a substantive structural change. A balanced implementation of water supply-enhancing and demand-management measures along with improved governance are key to attaining a cost-effective sustainable future in which economic growth, a population increase and trade expansion are compatible with the conservation of water resources.
Resumo:
To evaluate the long term sustainability of water withdrawals in the United States, a county level analysis of the availability of renewable water resources was conducted, and the magnitudes of human withdrawals from surface water and ground water sources and the stored water requirements during the warmest months of the year were evaluated. Estimates of growth in population and electricity generation were then used to estimate the change in withdrawals assuming that the rates of water use either remain at their current levels (the business as usual scenario) or that they exhibit improvements in efficiency at the same rate as observed over 1975 to 1995 (the improved efficiency scenario). The estimates show several areas, notably the Southwest and major metropolitan areas throughout the United States, as being likely to have significant new storage requirements with the business-as-usual scenario, under the condition of average water availability. These new requirements could be substantially eliminated under the improved efficiency scenario, thus indicating the importance of water use efficiency in meeting future requirements. The national assessment identified regions of potential water sustainability concern; these regions can be the subject of more targeted data collection and analyses in the future.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The biopharmaceutical industry has a growing demand and an increasing need to improve the current virus purification technologies, especially as more and more vaccines are produced from cell-culture derived virus particles. Downstream purification strategies can be expensive and account for 70% of the overall manufacturing costs. The economic pressure and purification processes can be particularly challenging when the virus to be purified is small, as in our model virus, porcine parvovirus (PPV). Our efforts are focused on designing an easy, economical, scalable and efficient system for virus purification, and we focused on aqueous two-phase systems. Industry acceptable standards for virus vaccine recovery can be as low as 30% due to demand of high final titer, virus transduction inhibitors and presence of empty or defective virus capsids as impurities. We have overcome these shortcomings by recovering a high 64% of infectious virus using an aqueous two-phase system. We used high molecular weight polymer and citrate salt to achieve a good yield and eliminated the major contaminant bovine serum albumin. Viruses are also studied for ensuring pure and safe drinking water. Low pressure microfiltrations are continuously being investigated for water filters as they allow high permeate flux and low fouling. Viruses such as PPV are small enough to pass through the microporous membranes. Control of viruses in water is crucial for public health and we have designed an affinity based membrane filter to capture virus. Nanofibers have a high surface to volume ratio providing a highly accessible surface area for virus adsorption. Chitosan an insoluble, biocompatible and biodegradable polymer was used for adsorbing trimer peptide WRW. About 0.2 μmoles of cysteine terminal WRW peptide was conjugated to amine terminal chitosan using maleimide conjugation chemistry. We achieved 90-99% virus removal from water adjusted to a neutral pH. The virus removal from affinity based chitosan was attributed to electrostatic and hydrophobic driven binding effect.
Resumo:
Vita.
Resumo:
The feasibility of using constructed wetlands (CWs) for the mitigation of pesticide runoff has been studied in the last decade. However, a lack of related data was verified when subsurface flow constructed wetlands (SSF CWs) are considered for this purpose. In the present work, SSF CWs were submitted to continuous ametryn addition and evaluated during an I I-week period, with the aim of determining the feasibility of these systems for mitigation of contaminated water. Ametryn was not added to one CW cell in order to provide a control for the experiments. Monitoring of treatment performance was executed by standard water quality parameters, ametryn chromatography quantification and macrophyte (Typha latifolia L) nutritional and agronomic property analysis. Results indicated that 39% of the total initially added amount of ametryn was removed, transferred or transformed. Herbicide metabolism and mineralisation were carried out by chemical and biological mechanisms. No statistic differences were observed in nutritional contents found in the T. latifolia crops of the CWs after the experimental period. Moreover, the biomass production (one valuable source of renewable energy) was equal to 3.3 t.ha(-1) (dry matter) in wetland cells. It was concluded that constructed wetland systems are capable of mitigating water contaminated with ametryn, acting as buffer filters between the emission sources and the downstream superficial water bodies.
Resumo:
An electric system based on renewable energy faces challenges concerning the storage and utilization of energy due to the intermittent and seasonal nature of renewable energy sources. Wind and solar photovoltaic power productions are variable and difficult to predict, and thus electricity storage will be needed in the case of basic power production. Hydrogen’s energetic potential lies in its ability and versatility to store chemical energy, to serve as an energy carrier and as feedstock for various industries. Hydrogen is also used e.g. in the production of biofuels. The amount of energy produced during hydrogen combustion is higher than any other fuel’s on a mass basis with a higher-heating-value of 39.4 kWh/kg. However, even though hydrogen is the most abundant element in the universe, on Earth most hydrogen exists in molecular forms such as water. Therefore, hydrogen must be produced and there are various methods to do so. Today, the majority hydrogen comes from fossil fuels, mainly from steam methane reforming, and only about 4 % of global hydrogen comes from water electrolysis. Combination of electrolytic production of hydrogen from water and supply of renewable energy is attracting more interest due to the sustainability and the increased flexibility of the resulting energy system. The preferred option for intermittent hydrogen storage is pressurization in tanks since at ambient conditions the volumetric energy density of hydrogen is low, and pressurized tanks are efficient and affordable when the cycling rate is high. Pressurized hydrogen enables energy storage in larger capacities compared to battery technologies and additionally the energy can be stored for longer periods of time, on a time scale of months. In this thesis, the thermodynamics and electrochemistry associated with water electrolysis are described. The main water electrolysis technologies are presented with state-of-the-art specifications. Finally, a Power-to-Hydrogen infrastructure design for Lappeenranta University of Technology is presented. Laboratory setup for water electrolysis is specified and factors affecting its commissioning in Finland are presented.
Resumo:
A novel approach was developed for nitrate analysis in a FIA configuration with amperometric detection (E=-0.48 V). Sensitive and reproducible current measurements were achieved by using a copper electrode activated with a controlled potential protocol. The response of the FIA amperometric method was linear over the range from 0.1 to 2.5 mmol L(-1) nitrate with a detection limit of 4.2 mu mol L(-1) (S/N = 3). The repeatability of measurements was determined as 4.7% (n=9) at the best conditions (flow rate: 3.0 mL min(-1), sample volume: 150 mu L and nitrate concentration: 0.5 mmol L(-1)) with a sampling rate of 60 samples h(-1). The method was employed for the determination of nitrate in mineral water and soft drink samples and the results were in agreement with those obtained by using a recommended procedure. Studies towards a selective monitoring of nitrite were also performed in samples containing nitrate by carrying out measurements at a less negative potential (-0.20 V). (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
This paper evaluates the efficiency of geotextile filters for sludge from a compact water treatment plant (WTP). The key aspects required in the methodology of selection and designing geotextile filters for sludge from dewatering was investigated based on laboratory tests results. The analyses were supported by the measured filtrated volume of water and turbidity resulting from variable head permeability tests carried out in two geotextiles and using the conventional granular filter (sand and gravel). The results of the present study showed that more than 75% of the dewatering sludge can be filtrated with low turbidity, which permits that this water can return to the treatment plan in order to be reuse in another cycle. The reduced volume of sludge retained by the geotextile that is transferred to the drying pound increases its efficiency by reducing the drying time. The low volume of the dry waste can be removed and the geotextile can be easily cleaned or replaced when needed. These procedures significantly reduce the volume of water needed in dewatering and also avoids waste discharges in the environment.
Resumo:
Esse estudo descreve o desenvolvimento e otimização de um método de extração em fase solida (SPE) para análise dos filtros ultravioletas (UV): benzofenona-3 (BP-3), etilhexil salicilato (ES), etilhexil metoxinamato (EHMC) e octocrileno (OC) em matrizes ambientais. Um planejamento fatorial fracionário (PFF) 25-1 foi empregado na avaliação das variáveis significativas do método de extração. As condições experimentais otimizadas da avaliação estatística foram: capacidade do cartucho de 500 mL, eluente acetato de etila, metanol como solvente de lavagem (10% em água, v/v) and volume do eluente de 3 × 2 mL e pH 3. Os parâmetros analíticos avaliados foram satisfatõrios, apresentando linearidade de 100 a 4000 ng L -1, recuperaç ões para os quatro níveis de fortificação (Limite de Quantificação do Método, 200, 1000 e 2000 ng L-1) entre 62 e 107% com desvio padrão relativo menor que 14%. Os limites de quantificação foram encontrados na faixa de ng L-1, variando entre 10 e 100 ng L-1. O método proposto foi aplicado para a determinação dos quatro filtros UV em amostras de águas naturais. This study describes the development and optimization of a solid-phase extraction (SPE) method for analysis of ultraviolet (UV) filters, benzophenone-3 (BP-3), ethylhexyl methoxycinnamate (EHMC), ethylhexyl salicylate (ES) and octocrylene (OC), in environmental matrices. A 25-1 fractional factorial design (FFD) was used to evaluate the significant variables for the extraction method. The optimized experimental conditions determined from the statistical evaluation were: breakthrough volume of 500 mL, eluent of ethyl acetate, wash solvent of methanol (10% in water, v/v), eluent volume of 3 × 2 mL and pH 3. The evaluated analytical parameters were satisfactory for the analytes and showed linearity between 100 and 4000 ng L-1, recoveries for four fortification levels (Method Quantification Limit, 200, 1000 and 2000 ng L-1) were between 62 and 107% with relative standard deviations less than 14%. Limits of quantification were in the ng L-1 range and were between 10 and 100 ng L-1. The proposed method was used to analyze four UV filters in natural water samples. ©2013 Sociedade Brasileira de Química.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)