982 resultados para Renal vascular conductance


Relevância:

100.00% 100.00%

Publicador:

Resumo:

1. The effect of acute inhibition of angiotensin-converting enzyme by captopril (50 mg) on renal haemodynamics and function was assessed in nine patients with essential hypertension on unrestricted sodium intake (n = 8) or low sodium diet (n = 1). 2. Captopril induced a rapid and significant decrease in arterial pressure, which was maximal within 60 min. 3. Effective renal plasma flow (ERPF) increased, glomerular filtration rate (GFR) did not change and filtration fraction (FF) decreased after captopril. No change in sodium excretion and a decrease in urinary potassium occurred. 4. In the patient on low sodium diet, captopril induced striking increases in GFR and ERPF (64 and 106% respectively). 5. The logarithm of baseline plasma renin activity was positvely correlated with the change in ERPF and negatively correlated with changes in FF and renal resistance. 6. The results indicate that in patients with essential hypertension angiotensin participates actively in the maintenance of renal vascular tone at the efferent arteriolar level. A possible influence of kinins remains to be defined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Malaria associated-acute kidney injury (AKI) is associated with 45% of mortality in adult patients hospitalized with severe form of the disease. However, the causes that lead to a framework of malaria-associated AKI are still poorly characterized. Some clinical studies speculate that oxidative stress products, a characteristic of Plasmodium infection, as well as proinflammatory response induced by the parasite are involved in its pathophysiology. Therefore, we aimed to investigate the development of malaria-associated AKI during infection by P. berghei ANKA, with special attention to the role played by the inflammatory response and the involvement of oxidative stress. For that, we took advantage of an experimental model of severe malaria that showed significant changes in the renal pathophysiology to investigate the role of malaria infection in the renal microvascular permeability and tissue injury. Therefore, BALB/c mice were infected with P. berghei ANKA. To assess renal function, creatinine, blood urea nitrogen, and ratio of proteinuria and creatininuria were evaluated. The products of oxidative stress, as well as cytokine profile were quantified in plasma and renal tissue. The change of renal microvascular permeability, tissue hypoxia and cellular apoptosis were also evaluated. Parasite infection resulted in renal dysfunction. Furthermore, we observed increased expression of adhesion molecule, proinflammatory cytokines and products of oxidative stress, associated with a decrease mRNA expression of HO-1 in kidney tissue of infected mice. The measurement of lipoprotein oxidizability also showed a significant increase in plasma of infected animals. Together, our findings support the idea that products of oxidative stress, as well as the immune response against the parasite are crucial to changes in kidney architecture and microvascular endothelial permeability of BALB/c mice infected with P. berghei ANKA.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Integrins are matrix receptors that regulate cell-matrix interactions during development and in adult tissue. In the adult kidney, the alpha8 chain is specifically expressed in glomerular mesangial cells and vascular smooth muscle cells. alpha8-deficient (alpha8-/-) mice demonstrate reductions in renal mass, which can range from complete renal agenesis to the development of kidneys that are only slightly smaller than wild-type kidneys. No histologic abnormalities of these kidneys have been described. However, considering the prominent expression of alpha8 in glomeruli and renal vessels, it seemed unlikely that the kidneys of alpha8-/- mice would be completely normal. Therefore, the renal phenotype of adult alpha8-/- mice was investigated, for assessment of more subtle morphologic alterations in kidney tissue. alpha8-/- mice displayed a significant reduction in nephron number and an increase in glomerular volume, compared with wild-type control animals. Albuminuria was not different in wild-type and alpha8-/- mice. Quantitative morphologic analyses revealed that the glomeruli of alpha8-/- mice were hypercellular, with an increased number of mesangial cells, compared with wild-type mice. Mesangial matrix deposition (as demonstrated for collagen IV and the alpha8 ligand fibronectin) was expanded in alpha8-/- mice, compared with wild-type mice. Collagens I and III, which are not normally present in glomeruli, were detected in the glomeruli of alpha8-/- mice. Staining for other glomerular integrins demonstrated an increased abundance of the collagen receptor alpha2 integrin in alpha8-/- mice. The glomerular capillary length density was significantly greater in alpha8-/- mice than in wild-type mice. Cortical arterial vessel walls were not altered in alpha8-/- mice, but the capillaries of the peritubular network were widened. Despite the strong mesangial and vascular expression of alpha8, glomerular and renal vascular alterations in alpha8-/- mice were relatively mild. Only aged alpha8-/- mice demonstrated increased glomerular capillary widening, compared with control animals. The results suggest that the lack of alpha8 can be largely compensated for, at least in younger alpha8-/- mice. It is not yet clear whether the occurrence of collagens that are not normally present in glomeruli and the increased abundance of the collagen receptor alpha2 contribute to maintaining the glomerular structure in alpha8-/- mice. The compensatory mechanisms involved will be the subject of future research.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims: We have optimized the isolated perfused mouse kidney (IPMK) model for studying renal vascular and tubular function in vitro using 24-28 g C57BL6J mice; the wild type controls for many transgenic mice. Methods and Results: Buffer composition was optimized for bovine serum albumin concentration (BSA). The effect of adding erythrocytes on renal function and morphology was assessed. Autoregulation was investigated during stepped increases in perfusion pressure. Perfusion for 60 min at 90-110 mmHg with Krebs bicarbonate buffer containing 5.5% BSA, and amino acids produced functional parameters within the in vivo range. Erythrocytes increased renal vascular resistance (3.8 +/- 0.2 vs 2.4 +/- 0.1 mL/min.mmHg, P < 0.05), enhanced sodium reabsorption (FENa = 0.3 +/- 0.08 vs 1.5 +/- 0.7%, P < 0.05), produced equivalent glomerular filtration rates (GFR; 364 +/- 38 vs 400 +/- 9 muL/min per gkw) and reduced distal tubular cell injury in the inner stripe (5.8 +/- 1.7 vs 23.7 +/- 3.1%, P < 0.001) compared to cell free perfusion. The IPMK was responsive to vasoconstrictor (angiotensin II, EC50 100 pM) and vasodilator (methacholine, EC50 75 nM) mediators and showed partial autoregulation of perfusate flow under control conditions over 65-85 mmHg; autoregulatory index (ARI) of 0.66 +/- 0.11. Angiotensin II (100 pM) extended this range (to 65-120 mmHg) and enhanced efficiency (ARI 0.21 +/- 0.02, P < 0.05). Angiotensin II facilitation was antagonized by methacholine (ARI 0.76 +/- 0.08) and papaverine (ARI 0.91 +/- 0.13). Conclusion: The IPMK model is useful for studying renal physiology and pathophysiology without systemic neurohormonal influences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Water deprivation and hypernatremia are major challenges for water and sodium homeostasis. Cellular integrity requires maintenance of water and sodium concentration within narrow limits. This regulation is obtained through engagement of multiple mechanisms and neural pathways that regulate the volume and composition of the extracellular fluid. The purpose of this short review is to summarize the literature on central neural mechanisms underlying cardiovascular, hormonal and autonomic responses to circulating volume changes, and some of the findings obtained in the last 12 years by our laboratory. We review data on neural pathways that start with afferents in the carotid body that project to medullary relays in the nucleus tractus solitarii and caudal ventrolateral medulla, which in turn project to the median preoptic nucleus in the forebrain. We also review data suggesting that noradrenergic A1 cells in the caudal ventrolateral medulla represent an essential link in neural pathways controlling extracellular fluid volume and renal sodium excretion. Finally, recent data from our laboratory suggest that these structures may also be involved in the beneficial effects of intravenous infusion of hypertonic saline on recovery from hemorrhagic shock.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anteroventral third ventricle (AV3V) region is a critical area of the forebrain, acting on fluid and electrolyte balance and maintaining cardiovascular homeostasis. The purpose of this study was to determine the effects of lesions to the anteroventral third ventricle region on cardiovascular responses to intravenous hypertonic saline (HS) infusion, Male Wistar rats were anesthetized with urethane. The femoral artery and jugular vein were cannulated to record mean arterial pressure (MAP) and infuse hypertonic saline (3M NaCl, 0.18 mL/100 g bw, over 1 min), respectively. Renal blood flow (RBF) was recorded by ultrasonic transit-time flow probes. Renal vascular conductance (RVC) was calculated as renal blood flow to mean arterial pressure ratio and expressed as percentage of baseline. After hypertonic saline infusion in sham animals, renal blood flow and renal vascular conductance increased to 137+10% and 125+7% (10 min), and 141 +/- 10% and 133 +/- 10% (60 min), respectively. Increases in mean arterial pressure (20-min peak: 12 +/- 3 mm Hg) were also observed. An acute lesion in the AV3V region (DC, 2 mA 25s) 30 min before infusion abrogated the effects of hypertonic saline. Mean arterial pressure was unchanged and renal blood flow and renal vascular conductance were 107 +/- 7% and 103 +/- 6% (10 min), and 107 +/- 4 and 106 +/- 4% (60 min), respectively. Marked tachycardia was observed immediately after lesion. Responses of chronic sham or lesioned rats were similar to those of acute animals. However, in chronic lesioned rats, hypertonic saline induced sustained hypertension. These results demonstrate that integrity of the AV3V region is essential for the renal vasodilation that follows acute changes in extracellular fluid compartment composition. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Several findings suggest that catecholaminergic neurones in the caudal ventrolateral medulla (CVLM) contribute to body fluid homeostasis and cardiovascular regulation. The present study sought to determine the effects of lesions of these neurones on the cardiovascular responses induced by changes in circulating volume. All experiments were performed in male Wistar rats (320-360 g). Medullary catecholaminergic neurones were lesioned by microinjection of anti-dopamine beta-hydroxylase-saporin (6.3 ng in 60 nl; SAP rats, n = 14) into the CVLM, whereas sham rats received microinjections of free saporin (1.3 ng in 60 nl, n = 15). Two weeks later, rats were anaesthetized (urethane, 1.2 g kg(-1), I.V..), instrumented for measurement of mean arterial pressure (MAP), renal blood flow (RBF) and renal vascular conductance (RVC), and infused with hypertonic saline (HS; 3 M NaCl, 0.18 ml (100 g body weight)(-1), I.V.) or an isotonic solution (volume expansion, VE; 4% Ficoll, 1% of body weight, I.V.). In sham rats, HS induced sustained increases in RBF and RVC (155 +/- 7 and 145 +/- 6% of baseline, at 20 min after HS). In SAP rats, RBF responses to HS were blunted (125 +/- 6%) and RVC increases were abolished (108 +/- 5%) 20 min after HS. Isotonic solution increased RBF and RVC in sham rats (149 +/- 10 and 145 +/- 12% of baseline, respectively, at 20 min). These responses were reduced in SAP rats (131 +/- 6 and 126 +/- 5%, respectively, at 20 min). Pressor responses to HS were larger in SAP rats than in sham rats (17 +/- 5 versus 9 +/- 2 mmHg, at 20 min), whereas during VE these responses were similar in both groups (6 +/- 3 versus 4 +/- 6 mmHg, at 20 min). Immunohistochemical analysis indicates that microinjections of anti-D beta H-saporin produced extensive destruction within the A1/C1 cell groups in the CVLM. These results suggest that catecholaminergic neurones mediate the cardiovascular responses to VE or increases in plasma sodium levels.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVE: The goal of this study was to investigate whether angiotensin II receptor blockers (ARBs) induce a comparable blockade of AT1 receptors in the vasculature and in the kidney when the renin-angiotensin system is activated by a thiazide diuretic. METHOD: Thirty individuals participated in this randomized, controlled, single-blind study. The blood pressure and renal hemodynamic and tubular responses to a 1-h infusion of exogenous angiotensin II (Ang II 3 ng/kg per min) were investigated before and 24 h after a 7-day administration of either irbesartan 300 mg alone or in association with 12.5 or 25 mg hydrochlorothiazide (HCTZ). Irbesartan 300/25 mg was also compared with losartan 100 mg, valsartan 160 mg, and olmesartan 20 mg all in association with 25 mg HCTZ. Each participant received two treatments with a 1-week washout period between treatments. RESULTS: The blood pressure response to Ang II was blocked by more than 90% with irbesartan alone or in association with HCTZ and with olmesartan/HCTZ and by nearly 60% with valsartan/HCTZ and losartan/HCTZ (P < 0.05). In the kidney, Ang II reduced renal plasma flow by 36% at baseline (P < 0.001). Irbesartan +/- HCTZ and olmesartan/HCTZ blocked the renal hemodynamic response to Ang II nearly completely, whereas valsartan/HCTZ and losartan/HCTZ only blunted this effect by 34 and 45%, respectively. At the tubular level, Ang II significantly reduced urinary volume (-84%) and urinary sodium excretion (-65%) (P < 0.01). These tubular effects of Ang II were only partially blunted by the administration of ARBs. CONCLUSION: These data demonstrate that ARBs prescribed at their recommended doses do not block renal tubular AT1 receptors as effectively as vascular receptors do. This observation may account for the need of higher doses of ARB for renal protection. Moreover, our results confirm that there are significant differences between ARBs in their capacity to induce a sustained vascular and tubular blockade of Ang II receptors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Tityus serrulatus, popularly known as yellow scorpion, is one of the most studied scorpion species in South America and its venom has supplied some highly active molecules. The effects of T. serrulatus venom upon the renal physiology in human showed increased renal parameters, urea and creatinine. However, in perfused rat kidney the effects were not tested until now. Isolated kidneys from Wistar rats, weighing 240-280 g, were perfused with Krebs-Henseleit solution containing 6% (g weight) of previously dialysed bovine serum albumin. The effects of T. serrulatus venom were studied on the perfusion pressure (PP), renal vascular resistance (RVR), urinary flow (UF), glomerular filtration rate (GFR), sodium tubular transport (%TNa+), potassium tubular transport (%TK+) and chloride tubular transport (%TCl-). Tityus serrulatus venom (TsV; 10 mu g/mL) was added to the system 30 min after the beginning of each experiment (n = 6). This 30 min period was used as an internal control. The mesenteric bed was perfused with Krebs solution kept warm at 37 T by a constant flow (4 mL/min), while the variable perfusion pressure was measured by means of a pressure transducer. The direct vascular effects of TsV (10 mu g/mL/min; n=6), infused at a constant rate (0.1 mL/min), were examined and compared to the infusion of the vehicle alone at the same rate. TsV increased PP (PP30'= 127.8 +/- 0.69 vs PP60' = 154.2 +/- 14 mmHg*, *p < 0.05) and RVR (RVR30' = 6.29 +/- 0.25 vs RVR60' = 8.03 +/- 0.82 mmHg/mL g(-1) min(-1)*, *p < 0.05), decreased GFR (GFR(30') =0.58 +/- 0.02 vs GFR(60') = 0.46 +/- 0.01 mL g(-1) min(-1)*, *p < 0.05) and UF (UF30' = 0.135 +/- 0.001 vs UF60' = 0.114 +/- 0.003 mL g(-1)min(-1)*, *p < 0.05). Tubular transport was not affected during the whole experimental period (120 min). on the other hand, the infusion of TsV (10 mu g/mL/min) increased the basal perfusion pressure of isolated arteriolar mesenteric bed (basal pressure: 74.17 +/- 3.42 vs TsV 151.8 +/- 17.82 mmHg*, *p < 0.05). TsV affects renal haemodynamics probably by a direct vasoconstrictor action leading to decreased renal flow. (c) 2005 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Crotalus durissus cascavella is a snake that is usually found in the scrublands of northeast Brazil. The components of its venom may have effects on the vascular and renal systems. Recently, a new bradykinin inhibitory peptide has been identified in the venom of the Crotalinae family. The aim of the present study was to investigate the renal and vascular effects of the natriuretic peptide isolated from the venom of Crotalus durissus cascavella (NP2_Casca). The chromatographic profile showed the fractionation of substances identified as convulxin, gyroxin, crotoxin and crotamine, as well as fractions V and VI. The electrophoretic profile of fraction V consisted of several bands ranging from approximately 6 kDa to 13 kDa, while fraction VI showed only two main electrophoretic bands with molecular weights of approximately 6 and 14 kDa. Reverse-phase chromatography showed that NP2_Casca corresponds to about 18% of fraction VI and that this fraction is the main natriuretic peptide. NP2_Casca was compared to other natriuretic peptides from other sources of snake venom. All amino acid sequences that were compared showed a consensus region of XGCFGX, XLDRIX and XSGLGCX. The group treated with NP2-Casca showed an increase in perfusion pressure, renal vascular resistance, urinary flow and glomerular filtration rate. The percent of total and proximal tubular transport of sodium was reduced significantly after administration of the peptide. The mean arterial pressure showed a dose-dependent decrease after infusion of NP2_Casca, and an increase in nitrite production. In the aortic ring assay, NP2_Casca caused a relaxant effect in endothelium-intact thoracic aortic rings precontracted with phenylephrine in the presence and absence of isatin. NP2_Casca failed to relax the aortic rings precontracted with an isosmotic potassium Krebs-Henseleit solution. In conclusion, the natriuretic peptide isolated from Crotalus durissus cascavella venom produced renal and vascular effects. NP2_Casca reduced total and proximal sodium tubular transport, leading to an increase in sodium excretion, thereby demonstrating a diuretic action. A hypotensive effect was displayed in an arterial pressure assay, with an increase in nitrite production, suggesting a possible vasoactive action. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)