987 resultados para Remote students
Resumo:
In the article the theoretical aspects of planning of the systems of the controlled from distance diagnosing of level of know ledges of students are resulted on the basis of modern pedagogical theoretical and technological approaches. The practical results of creation of the systems of this type are resulted for organization of testing both in the structure of local networks of higher educational establishments and with access through the global network of Internet.
Resumo:
The report was commissioned by the Department of Education, Science and Training to investigate the perceived efficacy of middle years programmes in all States and Territories in improving the quality of teaching, learning and student outcomes, especially in literacy and numeracy and for student members of particular target groups. These target groups included students from lower socio-economic communities, Aboriginal and Torres Strait Islander communities, students with a language background other than English, rural and remote students, and students struggling with the transition from middle/upper primary to the junior secondary years. The project involved large scale national and international literature reviews on Australian and international middle years approaches as well as an analysis of key literacy and numeracy teaching and learning strategies being used. In the report, there is emergent evidence of the relative efficacy of a combination of explicit state policy, dedicated funding and curriculum and professional development frameworks that are focused on the improvement of classroom pedagogy in the middle years. The programs that evidenced the greatest current and potential value for target group students tended to have developed in state policy environments that encouraged a structural rather than adjunct approach to middle years innovations. The authors conclude that in order to translate the gains made into sustainable improvement of educational results in literacy and numeracy for target groups, there is a need for a second generation of middle years theorising, research, development and practice.
Resumo:
This research project was commissioned by the Commonwealth Department of Education, Science and Training to investigate the perceived efficacy of middle years programs in all States and Territories in improving the quality of teaching, learning and student outcomes - especially in literacy and numeracy and for student members of particular target groups. The latter groups included students from lower socio-economic communities, Aboriginal and Torres Strait Islander (Indigenous) communities, students with a Language Background Other than English (hereafter LBOTE), rural and remote students, and students struggling with the transition from middle/upper primary to the junior secondary years.
Resumo:
The project was commissioned to investigate and analyse the issue of effective support for distance education students in the early years of school to maximise literacy and numeracy outcomes. The scope of this project was limited to students living in rural and remote areas who are undertaking education at home and who are in their early years of schooling. For the purpose of this project, the early years are conceptualised as the first three years of formal compulsory schooling in each of the States and Territories. There were a number of key tasks for the project which included: 1. Examining of the role of home tutors/supervisors This included interviewing personnel from the State and Territory distance education providers as well as the principals, teachers, home tutors and children. 2. Describing literacy and numeracy teaching and learning, and the use of information and communication technologies (ICT) in distance education This aspect of the project involved a critical review and analysis of relevant literature and reports in the last five years, and a consideration of the new initiatives that had been implemented in the States and Territories in the last two years. 3. The development of resources Through examination of the role of home tutors/supervisors, and an examination of literacy and numeracy and the use of technology in distance education, three resources were developed: ● A guide for home tutors/supervisors and schools of distance education about effective intervention and assessment strategies to support students’ learning and to assist the home tutors/supervisors in implementing ICT to support the development of literacy and numeracy in the early years. ● A calendar of activities for literacy and numeracy that would act as a stimulus for integrated and authentic activity for young children. ● An embryonic website of resources for the stakeholders in rural and distance education that might act as a catalyst for future resource building and sharing. In this way the final key task of the project, which was to create a context for a strategic dissemination plan, was realised when a strategy to address effective dissemination of the findings of the project so as to maximise their usefulness for the relevant groups was achieved.
Resumo:
This paper presents a study carried out in order to evaluate the students' perception in the development and use of remote Control and Automation education kits developed by two Universities. Three projects, based on real world environments, were implemented, being local and remotely operated. Students implemented the kits using the theoretical and practical knowledge, being the teachers a catalyst in the learning process. When kits were operational, end-user students got acquainted to the kits in the course curricula units. It is the author's believe that successful results were achieved not only in the learning progress on the Automation and Control fields (hard skills) but also on the development of the students soft skills, leading to encouraging and rewarding goals, motivating their future decisions and promoting synergies in their work. The design of learning experimental kits by students, under teacher supervision, for future use in course curricula by enduser students is an advantageous and rewarding experience.
Resumo:
Conferência: 2nd Experiment at International Conference (Exp at)- Univ Coimbra, Coimbra, Portugal - Sep 18-20, 2013
Resumo:
This paper presents the new internet remote laboratory (IRL), constructed at Mechanical Engineering Department (MED), Instituto Superior de Engenharia de Lisboa (ISEL), to teach Industrial Automation, namely electropneumatic cycles. The aim of this work was the development and implementation of a remote laboratory that was simple and effective from the user point of view, allowing access to all its functionalities through a web browser without having to install any other program and giving access to all the features that the students can find at the physical laboratory. With this goal in mind, it has been implemented a simple architecture with the new programmable logic controller (PLC) SIEMENS S7-1200, and with the aid of several free programs, programming technologies such as JavaScript, PHP and databases, it was possible to have a remote laboratory, with a simple interface, to teach industrial automation students.
Resumo:
Remote experimentation laboratories are systems based on real equipment, allowing students to perform practical work through a computer connected to the internet. In engineering fields lab activities play a fundamental role. Distance learning has not demonstrated good results in engineering fields because traditional lab activities cannot be covered by this paradigm. These activities can be set for one or for a group of students who work from different locations. All these configurations lead to considering a flexible model that covers all possibilities (for an individual or a group). An inter-continental network of remote laboratories supported by both European and Latin American institutions of higher education has been formed. In this network context, a learning collaborative model for students working from different locations has been defined. The first considerations are presented.
Resumo:
A book about remote labs and engineering education begs to begin with the question, “Why do engineering programs include lab work?” Although this may seem like a given and not worth discussing, whenever we’re faced with innovative ideas, it’s important to “put everything on the table” in order to reassess its value to our program or goals. What is it about lab work that is of value to students? Are there elements of traditional labs that we could let go of? Are there elements that we don’t want to lose? These questions can help us to clarify how and why labs are integrated into an engineering education program.
Resumo:
In this paper the authors intend to demonstrate the utilization of remote experimentation (RE) using mobile computational devices in the Science areas of the elementary school, with the purpose to develop practices that will help in the assimilation process of the subjects taught in classroom seeking to interlink them with the daily students? activities. Allying mobility with RE we intend to minimize the space-temporal barrier giving more availability and speed in the information access. The implemented architecture utilizes technologies and freely distributed softwares with open code resources besides remote experiments developed in the Laboratory of Remote Experimentation (RExLab) of Federal University of Santa Catarina (UFSC), in Brazil, through the physical computation platform of the ?open hardware of construction of our own. The utilization of open code computational tools and the integration of hardware to the 3D virtual worlds, accessible through mobile devices, give to the project an innovative face with a high potential for reproducibility and reusability.
Resumo:
The great majority of the courses on science and technology areas where lab work is a fundamental part of the apprenticeship was not until recently available to be taught at distance. This reality is changing with the dissemination of remote laboratories. Supported by resources based on new information and communication technologies, it is now possible to remotely control a wide variety of real laboratories. However, most of them are designed specifically to this purpose, are inflexible and only on its functionality they resemble the real ones. In this paper, an alternative remote lab infrastructure devoted to the study of electronics is presented. Its main characteristics are, from a teacher's perspective, reusability and simplicity of use, and from a students' point of view, an exact replication of the real lab, enabling them to complement or finish at home the work started at class. The remote laboratory is integrated in the Learning Management System in use at the school, and therefore, may be combined with other web experiments and e-learning strategies, while safeguarding security access issues.
Resumo:
This paper presents a collaborative virtual learning environment, which includes technologies such as 3D virtual representations, learning and content management systems, remote experiments, and collaborative learning spaces, among others. It intends to facilitate the construction, management and sharing of knowledge among teachers and students, in a global perspective. The environment proposes the use of 3D social representations for accessing learning materials in a dynamic and interactive form, which is regarded to be closer to the physical reality experienced by teachers and students in a learning context. A first implementation of the proposed extended immersive learning environment, in the area of solid mechanics, is also described, including the access to theoretical contents and a remote experiment to determine the elastic modulus of a given object.These instructions give you basic guidelines for preparing camera-ready papers for conference proceedings. Use this document as a template if you are using Microsoft Word 6.0 or later. Otherwise, use this document as an instruction set. The electronic file of your paper will be formatted further. Define all symbols used in the abstract. Do not cite references in the abstract.
Resumo:
The goal of this paper is to discuss the benefits and challenges of yielding an inter-continental network of remote laboratories supported and used by both European and Latin American Institutions of Higher Education. Since remote experimentation, understood as the ability to carry out real-world experiments through a simple Web browser, is already a proven solution for the educational community as a supplement to on-site practical lab work (and in some cases, namely for distance learning courses, a replacement to that work), the purpose is not to discuss its technical, pedagogical, or economical strengths, but rather to raise and try to answer some questions about the underlying benefits and challenges of establishing a peer-to-peer network of remote labs. Ultimately, we regard such a network as a constructive mechanism to help students gain the working and social skills often valued by multinational/global companies, while also providing awareness of local cultural aspects.
Resumo:
The use of remote labs in undergraduate courses has been reported in literature several times since the mid 90's. Nevertheless, very few articles present results about the correspondent learning gains obtained by students, and in what conditions those systems can be more efficient, thus suggesting a lack of data concerning their pedagogical effectiveness. This paper addresses such a gap by presenting some initial findings concerning the use of a remote lab (VISIR), in a large undergraduate course on Physics, with over 550 students enrolled.
Resumo:
Remote laboratories are an emergent technological and pedagogical tool at all education levels, and their widespread use is an important part of their own improvement and evolution. This paper describes several issues encountered on laboratorial classes, on higher education courses, when using remote laboratories based on PXI systems, either using the VISIR system or an alternate in-house solution. Three main issues are presented and explained, all reported by teachers, that gave support to students' use of remote laboratories. The first issue deals with the need to allow students to select the actual place where an ammeter is to be inserted on electric circuits, even incorrectly, therefore emulating real-world difficulties. The second one deals with problems with timing when several measurements are required at short intervals, as in the discharge cycle of a capacitor. In addition, the last issue deals with the use of a multimeter in dc mode when reading ac values, a use that collides with the lab settings. All scenarios are presented and discussed, including the solution found for each case. The conclusion derived from the described work is that the remote laboratories area is an expanding field, where practical use leads to improvement and evolution of the available solutions, requiring a strict cooperation and information-sharing between all actors, i.e., developers, teachers, and students.