979 resultados para Remote laboratory


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An alternative learning approach for destructive testing of structural specimens in civil engineering is explored by using a remote laboratory experimentation method. The remote laboratory approach focuses on overcoming the constraints in the hands-on experimentation without compromising the understanding of the students on the concepts and mechanics of reinforced concrete structures. The goal of this study is to evaluate whether or not the remote laboratory experimentation approach can become a standard in civil engineering teaching. The teaching activity using remote-laboratory experimentation is presented here and the outcomes of this activity are outlined. The experience and feedback gathered from this study are used to improve the remote-laboratory experimentation approach in future years to other aspects of civil engineering where destructive testing is essential.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The great majority of the courses on science and technology areas where lab work is a fundamental part of the apprenticeship was not until recently available to be taught at distance. This reality is changing with the dissemination of remote laboratories. Supported by resources based on new information and communication technologies, it is now possible to remotely control a wide variety of real laboratories. However, most of them are designed specifically to this purpose, are inflexible and only on its functionality they resemble the real ones. In this paper, an alternative remote lab infrastructure devoted to the study of electronics is presented. Its main characteristics are, from a teacher's perspective, reusability and simplicity of use, and from a students' point of view, an exact replication of the real lab, enabling them to complement or finish at home the work started at class. The remote laboratory is integrated in the Learning Management System in use at the school, and therefore, may be combined with other web experiments and e-learning strategies, while safeguarding security access issues.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, remote laboratory experiment access is considered through the use of radio frequency identification (RFID) technology. Contactless smart cards are used widely in many applications from travel cards through to building access control and inventory tracking. However, their use is considered here for access to electronic engineering experimentation in a remote laboratory setting by providing the ability to interface experiments through this contactless (wireless) connection means. A case study design is implemented to demonstrate such a means by incorporating experiment data onto a contactless smart card and accessing this via a card reader and web server arrangement. © 2012 IEEE.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Paper submitted to ACE 2013, 10th IFAC Symposium on Advances in Control Education, University of Sheffield, UK, August 28-30, 2013.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND OR CONTEXT: Current work in remote laboratories focuses on student interaction in a setting that can be at times disconnected from real world systems. Laboratories have been developed that show models of a working system, focusing on a single aspect, but very few laboratories allow the user to see the outputs of a working system that interacts with the real world as would be expected outside of a laboratory setting. It was aimed with this paper to show a design of a novel approach to building a remote laboratory that would be able to interact with a fully functional renewable energy system, and to show the students the outputs of such a system in real time. It allows for the user to be presented with information in a new context.
PURPOSE OR GOAL: With this research it is hoped to achieve a remote laboratory that will be able to present students with the data from a renewable energy system live, as it is generated as well as all the logged date generated. It is aimed with this novel approach to building a remote laboratory to assist the students in learning about renewable energy systems while allowing the student to access real data, instead of simulated data. Links to increased motivation due to realism in data given as well as change in student perception on learning in remote laboratories mean that a system such as this could change the way students approach learning about renewable energy generation systems. This will require further research however.
APPROACH: This remote laboratory required gathering data from an already established system. The live results were not recorded, and a log file was generated daily, however this was not fast enough to give to students as it was generated, so a system that could maintain communication between all systems, while also polling for data itself was required. In addition to this, the system had to communicate to a server that would give students access to the live data. The server was set up in such a way that students were not required to install any programs on their computer, multiple students could access the data at any given time, and a wide range of devices, including mobile devices, could all access the remote laboratory.
DISCUSSION: Key outcomes include the design of the remote laboratory, including screenshots of data acquisition from the renewable energy system from different devices. The design is split into two sections, one covering the server side architecture while another covers the data acquisition architecture. A very brief discussion on students’ initial interaction is also undertaken.
RECOMMENDATIONS/IMPLICATIONS/CONCLUSION: Research has shown that the degree of realism in remote education can have an effect on students’ behaviors/motivation in a remote laboratory. By allowing students to knowingly access a real system that is currently being used to generate power from renewable energy sources, the methods and motivations that students use when approaching renewable energy systems may change.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Recent advances in telecommunications technologies have transformed the modes of learning and teaching. One potentially vital component in the equation will be Remote Education or Remote Learning, the ability to compress time and space between teachers and students through the judicious application of technology. The purpose of this thesis is to develop a Remote Learning and Laboratory Center over the Internet and ISDN, which provide education and access to resources to those living in remote areas, children in hospitals and traveling families, with audio, video and data.^ Remote Learning and Laboratory Center (RLLC) is not restricted to merely traditional education processes such as universities or colleges, it can be very useful for companies to train their engineers, via networks. This capability will facilitate the best use of scarce, high quality educational resources and will bring equity of services to students as well as will be helpful to the Industries to train their engineers. The RLLC over the Internet and ISDN has been described in details and implemented successfully. For the Remote Laboratory, the experiment procedure has been demonstrated on reprogrammable CPLD design using ISR Kit. ^

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Within the pedagogical community, Serious Games have arisen as a viable alternative to traditional course-based learning materials. Until now, they have been based strictly on software solutions. Meanwhile, research into Remote Laboratories has shown that they are a viable, low-cost solution for experimentation in an engineering context, providing uninterrupted access, low-maintenance requirements, and a heightened sense of reality when compared to simulations. This paper will propose a solution where both approaches are combined to deliver a Remote Laboratory-based Serious Game for use in engineering and school education. The platform for this system is the WebLab-Deusto Framework, already well-tested within the remote laboratory context, and based on open standards. The laboratory allows users to control a mobile robot in a labyrinth environment and take part in an interactive game where they must locate and correctly answer several questions, the subject of which can be adapted to educators' needs. It also integrates the Google Blockly graphical programming language, allowing students to learn basic programming and logic principles without needing to understand complex syntax.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Remote Laboratories or WebLabs constitute a first-order didactic resource in engineering faculties. However, in many cases, they lack a proper software design, both in the client and server side, which degrades their quality and academic usefulness. This paper presents the main characteristics of a Remote Laboratory, analyzes the software technologies to implement the client and server sides in a WebLab, and correlates these technologies with the characteristics to facilitate the selection of a technology to implement a WebLab. The results obtained suggest the adoption of a Service Oriented Laboratory Architecture-based approach for the design of future Remote Laboratories so that client-agnostic Remote Laboratories and Remote Laboratory composition are enabled. The experience with the real Remote Laboratory, WebLab-Deusto, is also presented.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

As technology is increasingly being seen as a facilitator to learning, open remote laboratories are increasingly available and in widespread use around the world. They provide some advantages over traditional hands-on labs or simulations. This paper presents the results of integrating the open remote laboratory VISIR into several courses, in various contexts and using various methodologies. These integrations, all related to higher education engineering, were designed by teachers with different perspectives to achieve a range of learning outcomes. The degree to which these VISIR-related outcomes were accomplished is discussed. The results reflect the levels of student engagement and learning and of teacher involvement. From the analysis, a connection between these two aspects was traced, although only related to the user profiles. VISIR is shown to be always of benefit for more motivated students, but this benefit can be maximized under particular conditions and characteristics.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This paper presents LABNET, an internet-based remote laboratory for control engineering education developed at UEM-University. At present, the remote laboratory integrates three basic physical systems (level control, temperature control and ship stabilizing system). In this paper, the LABNET architecture is presented and discussed in detail. Issues concerned with concurrent user access, local or remote feedback, automatic report generating and reusing of experiment’s templates have been addressed. Furthermore, the experiences gained developing, testing and using the system will be also presented and their consequences for future design.