897 resultados para Relational algebra
Resumo:
Some examples from the book. Connolly, T. M. and C. E. Begg (2005). Database systems : a practical approach to design, implementation, and management. Harlow, Essex, England ; New York, Addison-Wesley.
Resumo:
This article describes the design and implementation of computer-aided tool called Relational Algebra Translator (RAT) in data base courses, for the teaching of relational algebra. There was a problem when introducing the relational algebra topic in the course EIF 211 Design and Implementation of Databases, which belongs to the career of Engineering in Information Systems of the National University of Costa Rica, because students attending this course were lacking profound mathematical knowledge, which led to a learning problem, being this an important subject to understand what the data bases search and request do RAT comes along to enhance the teaching-learning process.It introduces the architectural and design principles required for its implementation, such as: the language symbol table, the gramatical rules and the basic algorithms that RAT uses to translate from relational algebra to SQL language. This tool has been used for one periods and has demonstrated to be effective in the learning-teaching process. This urged investigators to publish it in the web site: www.slinfo.una.ac.cr in order for this tool to be used in other university courses.
Resumo:
本文从空值的完全语义出发,依据空值环境下信息等价和信息相容的含义,全面定义了空值环境下运算结果完备的关系代数运算,并对空值环境下关系代数运算的有效性和完备性进行了讨论。
Resumo:
In this paper,the traditional relational model is extended in order to express indefinite and maybe information. On the basis of the extended relational model.,the foundamental operations in relational algebra are defined again,and the policy and algorithm for updating relational database are given.
Resumo:
本文在深刻理解空值语义的基础上,给出一种处理占位型空值的方法。讨论了空值环境下关系数据库的查询策略,定义了含三种查询操作的关系代数最小完备集中的关系代数运算,并对查询计算的有效性和完备性进行了分析。
Resumo:
本文以[1]中的扩展关系模型为基础在两种元组级的不完全信息──不确定及可能信息中引入属性级的不完全信息空值,使两种不同性质的不完全信息同时出现在同一关系中。为了能够查询到不同种类及不同确定程度的信息,文中制定了这种扩展关系模型上关系的查询策略,定义了能够体现这种策略的最小关系代数运算。
Resumo:
本文从空值语义及更新操作的关系出发,提出了一种新的扩展关系模型,用以组织更新操作下的含有空值的关系数据库中的信息.同时,定义了这种模型下的基本关系代数运算.为实现空值环境下关系数据库的数据更新奠定了基础。
Resumo:
La enseñanza y evaluación automática a través de un sistema Computer Based Assessment (CBA) requiere de software especializado que se adapte a la tipología de actividades a tratar y evaluar. En esta tesis se ha desarrollado un entorno CBA que facilita el aprendizaje y evaluación de los principales temas de una asignatura de bases de datos. Para ello se han analizado las herramientas existentes en cada uno de estos temas (Diagramas Entidad/Relación, diagramas de clases, esquemas de bases de datos relacionales, normalización, consultas en álgebra relacional y lenguaje SQL) y para cada uno de ellos se ha analizado, diseñado e implementado un módulo de corrección y evaluación automática que aporta mejoras respecto a los existentes. Estos módulos se han integrado en un mismo entorno al que hemos llamado ACME-DB.
Resumo:
To effectively support today’s global economy, database systems need to manage data in multiple languages simultaneously. While current database systems do support the storage and management of multilingual data, they are not capable of querying across different natural languages. To address this lacuna, we have recently proposed two cross-lingual functionalities, LexEQUAL[13] and SemEQUAL[14], for matching multilingual names and concepts, respectively. In this paper, we investigate the native implementation of these multilingual functionalities as first-class operators on relational engines. Specifically, we propose a new multilingual storage datatype, and an associated algebra of the multilingual operators on this datatype. These components have been successfully implemented in the PostgreSQL database system, including integration of the algebra with the query optimizer and inclusion of a metric index in the access layer. Our experiments demonstrate that the performance of the native implementation is up to two orders-of-magnitude faster than the corresponding outsidethe- server implementation. Further, these multilingual additions do not adversely impact the existing functionality and performance. To the best of our knowledge, our prototype represents the first practical implementation of a crosslingual database query engine.
Resumo:
El cálculo de relaciones binarias fue creado por De Morgan en 1860 para ser posteriormente desarrollado en gran medida por Peirce y Schröder. Tarski, Givant, Freyd y Scedrov demostraron que las álgebras relacionales son capaces de formalizar la lógica de primer orden, la lógica de orden superior así como la teoría de conjuntos. A partir de los resultados matemáticos de Tarski y Freyd, esta tesis desarrolla semánticas denotacionales y operacionales para la programación lógica con restricciones usando el álgebra relacional como base. La idea principal es la utilización del concepto de semántica ejecutable, semánticas cuya característica principal es el que la ejecución es posible utilizando el razonamiento estándar del universo semántico, este caso, razonamiento ecuacional. En el caso de este trabajo, se muestra que las álgebras relacionales distributivas con un operador de punto fijo capturan toda la teoría y metateoría estándar de la programación lógica con restricciones incluyendo los árboles utilizados en la búsqueda de demostraciones. La mayor parte de técnicas de optimización de programas, evaluación parcial e interpretación abstracta pueden ser llevadas a cabo utilizando las semánticas aquí presentadas. La demostración de la corrección de la implementación resulta extremadamente sencilla. En la primera parte de la tesis, un programa lógico con restricciones es traducido a un conjunto de términos relacionales. La interpretación estándar en la teoría de conjuntos de dichas relaciones coincide con la semántica estándar para CLP. Las consultas contra el programa traducido son llevadas a cabo mediante la reescritura de relaciones. Para concluir la primera parte, se demuestra la corrección y equivalencia operacional de esta nueva semántica, así como se define un algoritmo de unificación mediante la reescritura de relaciones. La segunda parte de la tesis desarrolla una semántica para la programación lógica con restricciones usando la teoría de alegorías—versión categórica del álgebra de relaciones—de Freyd. Para ello, se definen dos nuevos conceptos de Categoría Regular de Lawvere y _-Alegoría, en las cuales es posible interpretar un programa lógico. La ventaja fundamental que el enfoque categórico aporta es la definición de una máquina categórica que mejora e sistema de reescritura presentado en la primera parte. Gracias al uso de relaciones tabulares, la máquina modela la ejecución eficiente sin salir de un marco estrictamente formal. Utilizando la reescritura de diagramas, se define un algoritmo para el cálculo de pullbacks en Categorías Regulares de Lawvere. Los dominios de las tabulaciones aportan información sobre la utilización de memoria y variable libres, mientras que el estado compartido queda capturado por los diagramas. La especificación de la máquina induce la derivación formal de un juego de instrucciones eficiente. El marco categórico aporta otras importantes ventajas, como la posibilidad de incorporar tipos de datos algebraicos, funciones y otras extensiones a Prolog, a la vez que se conserva el carácter 100% declarativo de nuestra semántica. ABSTRACT The calculus of binary relations was introduced by De Morgan in 1860, to be greatly developed by Peirce and Schröder, as well as many others in the twentieth century. Using different formulations of relational structures, Tarski, Givant, Freyd, and Scedrov have shown how relation algebras can provide a variable-free way of formalizing first order logic, higher order logic and set theory, among other formal systems. Building on those mathematical results, we develop denotational and operational semantics for Constraint Logic Programming using relation algebra. The idea of executable semantics plays a fundamental role in this work, both as a philosophical and technical foundation. We call a semantics executable when program execution can be carried out using the regular theory and tools that define the semantic universe. Throughout this work, the use of pure algebraic reasoning is the basis of denotational and operational results, eliminating all the classical non-equational meta-theory associated to traditional semantics for Logic Programming. All algebraic reasoning, including execution, is performed in an algebraic way, to the point we could state that the denotational semantics of a CLP program is directly executable. Techniques like optimization, partial evaluation and abstract interpretation find a natural place in our algebraic models. Other properties, like correctness of the implementation or program transformation are easy to check, as they are carried out using instances of the general equational theory. In the first part of the work, we translate Constraint Logic Programs to binary relations in a modified version of the distributive relation algebras used by Tarski. Execution is carried out by a rewriting system. We prove adequacy and operational equivalence of the semantics. In the second part of the work, the relation algebraic approach is improved by using allegory theory, a categorical version of the algebra of relations developed by Freyd and Scedrov. The use of allegories lifts the semantics to typed relations, which capture the number of logical variables used by a predicate or program state in a declarative way. A logic program is interpreted in a _-allegory, which is in turn generated from a new notion of Regular Lawvere Category. As in the untyped case, program translation coincides with program interpretation. Thus, we develop a categorical machine directly from the semantics. The machine is based on relation composition, with a pullback calculation algorithm at its core. The algorithm is defined with the help of a notion of diagram rewriting. In this operational interpretation, types represent information about memory allocation and the execution mechanism is more efficient, thanks to the faithful representation of shared state by categorical projections. We finish the work by illustrating how the categorical semantics allows the incorporation into Prolog of constructs typical of Functional Programming, like abstract data types, and strict and lazy functions.
Resumo:
Purpose – Deontical impure systems are systems whose object set is formed by an s-impure set, whose elements are perceptuales significances (relative beings) of material and/or energetic objects (absolute beings) and whose relational set is freeways of relations, formed by sheaves of relations going in two-way directions and at least one of its relations has deontical properties such as permission, prohibition, obligation and faculty. The paper aims to discuss these issues. Design/methodology/approach – Mathematical and logical development of human society ethical and normative structure. Findings – Existence of relations with positive imperative modality (obligation) would constitute the skeleton of the system. Negative imperative modality (prohibition) would be the immunological system of protection of the system. Modality permission the muscular system, that gives the necessary flexibility. Four theorems have been formulated based on Gödel's theorem demonstrating the inconsistency or incompleteness of DISs. For each constructed systemic conception can happen to it one of the two following things: either some allowed responses are not produced or else some forbidden responses are produced. Responses prohibited by the system are defined as nonwished effects. Originality/value – This paper is a continuation of the four previous papers and is developed the theory of deontical impure systems.