870 resultados para Rejuvenating agent
Resumo:
With the increase of asphalt milling services was also a significant increase in recycling services pavements. The techniques used today are basically physical processes in which the milled material is incorporated into new asphalt mixtures or executed on site, with the addition of virgin asphalt and rejuvenating agent. In this paper seeks to analyze the efficiency of extraction of CAP (Petroleum Asphalt Cement) mixtures from asphalt milling, using commercial solvents and microemulsions. The solvents were evaluated for their ability to solubilize asphalt using an extractor reflux-type apparatus. Pseudoternary diagrams were developed for the preparation of microemulsion O/W surfactant using a low-cost coconut oil saponified (OCS). Microemulsions were used to extract the CAP of asphalt through physicochemical process cold. Analysis was performed concentration of CAP in solution by spectroscopy. The data provided in the analysis of concentration by the absorbance of the solution as the basis for calculating the percentage of extraction and the mass flow of the CAP in the solution. The results showed that microemulsions prepared with low concentration of kerosene and butanol/OCS binary has high extraction power of CAP and its efficiency was higher than pure kerosene, reaching 95% rate of extraction
Resumo:
The skin pigmentation caused by ultraviolet light irradiation as a defense against the carcinogenic action of solar light may lead to early skin aging and to hyperchromia, which treatment requires the use of photo-protective, depigmenting and rejuvenating agents. Recently, there have been used many substances for the prevention and/or treatment of skin aging as well as to lowering the skin pigmentation. Glycolic acid is the alpha-hydroxy acid most commonly used in cosmetic and dermatological prepatations. This use is due to its depigmentating and rejuvenating properties and its efficacy at different concentrations, when incorporated to different kind of excipients.
Resumo:
With the increasing importance of conserving natural resources and moving toward sustainable practices, the aging transportation infrastructure can benefit from these ideas by improving their existing recycling practices. When an asphalt pavement needs to be replaced, the existing pavement is removed and ground up. This ground material, known as reclaimed asphalt pavement (RAP), is then added into new asphalt roads. However, since RAP was exposed to years of ultraviolet degradation and environmental weathering, the material has aged and cannot be used as a direct substitute for aggregate and binder in new asphalt pavements. One material that holds potential for restoring the aged asphalt binder to a usable state is waste engine oil. This research aims to study the feasibility of using waste engine oil as a recycling agent to improve the recyclability of pavements containing RAP. Testing was conducted in three phases, asphalt binder testing, advanced asphalt binder testing, and laboratory mixture testing. Asphalt binder testing consisted of dynamic shear rheometer and rotational viscometer testing on both unaged and aged binders containing waste engine oil and reclaimed asphalt binder (RAB). Fourier Transform Infrared Spectroscopy (FTIR) testing was carried out to on the asphalt binders blended with RAB and waste engine oil compare the structural indices indicative of aging. Lastly, sample asphalt samples containing waste engine oil and RAP were subjected to rutting testing and tensile strength ratio testing. These tests lend evidence to support the claim that waste engine oil can be used as a rejuvenating agent to chemically restore asphalt pavements containing RAP. Waste engine oil can reduce the stiffness and improve the low temperature properties of asphalt binders blended with RAB. Waste engine oil can also soften asphalt pavements without having a detrimental effect on the moisture susceptibility.
Resumo:
This study evaluated in vitro the shear bond strength of a resin-based pit-and-fissure sealant (Fluroshield - F) associated with either an ethanol-based (Adper Single Bond 2 - SB) or an acetone-based (Prime & Bond - PB) adhesive system under conditions of oil contamination. Mesial and distal enamel surfaces from 30 sound third molars were randomly assigned to 2 groups (n=30): I - no oil contamination; II - oil contamination. Contamination (0.25 mL during 10 s) was performed after 37% phosphoric acid etching with an air/oil spray. The specimens were randomly assigned to subgroups, according to the bonding protocol adopted: subgroup A - F was applied to enamel without an intermediate bonding agent layer; In subgroups B and C, SB and PB, respectively, were applied, light-cured, and then F was applied and light-cured. Shear bond strength was tested at a crosshead speed of 0.5 mm/min in a universal testing machine. Means (± SD) in MPa were: IA-11.28 (±1.84); IIA-12.02 (±1.15); IB-9.73 (±2.38); IIB-9.62 (±2.29); IC-28.30 (±1.63); and IIC-25.50 (±1.91). It may be concluded that the oil contamination affected negatively the sealant bonding to enamel and the acetone-based adhesive system (PB) layer applied underneath the sealant was able to prevent its deleterious effects to adhesion.
Resumo:
We report three new rickettsiosis human cases in Uruguay. The three clinical cases presented clinical manifestations similar to previous reported cases of Rickettsia parkeri in the United States; that is mild fever (< 40 ºC), malaise, headache, rash, inoculation eschar at the tick bite site, regional lymphadenopathy, and no lethality. Serological antibody-absorption tests with purified antigens of R. parkeri and Rickettsia rickettsii, associated with immunofluorescence assay indicated that the patients in two cases were infected by R. parkeri. Epidemiological and clinical evidences, coupled with our serological analysis, suggest that R. parkeri is the etiological agent of human cases of spotted fever in Uruguay, a disease that has been recognized in that country as cutaneous-ganglionar rickettsiosis.
Resumo:
Leishmaniasis is a neglected disease and endemic in developing countries. A lack of adequate and definitive chemotherapeutic agents to fight against this infection has led to the investigation of numerous compounds. The aim of this study was to investigate the effect of RT-01, an organotellurane compound presenting biological activities, in 2 experimental systems against Leishmania amazonensis. The in vitro system consisted of promastigotes and amastigotes forms of the parasite, and the in vivo system consisted of L. amazonensis infected BALB/c mice, an extremely susceptible mouse strain. The compound proved to be toxic against promastigotes and amastigotes. The study also showed that treatment with RT-01 produces an effect similar to that treatment with the reference antimonial drug, Glucantime, in L. amazonensis infected mice. The best results were obtained following RT-01 intralesional administration (720 mu g/kg/day); mice showed significant delay in the development of cutaneous lesions and decreased numbers of parasites obtained from the lesions. Significant differences in tissue pathology consisted mainly of no expressive accumulation of inflammatory cells and well-preserved structures in the skin tissue of RT-01-treated mice compared with expressive infiltration of infected cells replacing the skin tissue in lesions of untreated mice. These findings highlight the fact that the apparent potency of organotellurane compounds, together with their relatively simple structure, may represent a new avenue for the development of novel drugs to combat parasitic diseases.
Resumo:
Ticlopidine hydrochloride (TICLID (R)) is a platelet antiaggregating agent whose use as a potent antithrombotic pharmaceutical ingredient is widespread, even though this drug has not been well characterized in the solid state. Only the crystal phase used for drug product manufacturing is known. Here, a new polymorph of ticlopidine hydrochloride was discovered and its structure was determined. While the antecedent polymorph crystallizes in the triclinic space group P (1) over bar, the new crystal phase was solved in the monoclinic space group P2(1)/c. Both polymorphs crystallize as racemic mixtures of enantiomeric (ticlopidine)(+) cations. Detailed geometrical and packing comparisons between the crystal structures of the two polymorphs have allowed us to understand how different supramolecular architectures are assembled. It was feasible to conclude that the main difference between the two polymorphs is a rotation of about 120 degrees on the bridging bond between the thienopyridine and o-chlorobenzyl moieties. The differential o-chlorobenzyl conformation is related to changeable patterns of weak intermolecular contacts involving this moiety, such as edge-to-face Cl center dot center dot center dot pi and C-H center dot center dot center dot pi interactions in the new polymorph and face-to-face pi center dot center dot center dot pi contacts in the triclinic crystal phase, leading to a symmetry increase in the ticlopidine hydrochloride solid state form described for the first time in this study. Other conformational features are slightly different between the two polymorphs, such as the thienopyridine puckerings and the o-chlorophenyl orientations. These conformational characteristics were also correlated to the crystal packing patterns.
Resumo:
Moniliophthora perniciosa is the causal agent of the witches` broom disease of cacao. Based on available genomic sequences, we identified 30 new microsatellite loci, which were analysed using 50 isolates from four populations sampled over a wide geographical area in Brazil, including three populations from the Amazon, the fungal putative centre of diversity, plus one from Bahia. Nine loci were polymorphic, with an average of 2.9 alleles per locus. The level of polymorphism observed was low, but these markers may allow the evaluation of pathogen diversity and the establishment of molecular standards for isolate fingerprinting to support cacao breeding.
Resumo:
The technology of self-reducing pellets for ferro-alloys production is becoming an emerging process due to the lower electric energy consumption and the improvement of metal recovery in comparison with the traditional process. This paper presents the effects of reduction temperature, addition of ferro-silicon and addition of slag forming agents for the production of high carbon ferro-chromium by utilization of self-reducing pellets. These pellets were composed of Brazilian chromium ore (chromite) concentrate, petroleum coke, Portland cement, ferro-silicon and slag forming components (silica and hydrated lime). The pellets were processed at 1 773 K, 1 823 K and 1 873 K using an induction furnace. The products obtained, containing slag and metallic phases, were analyzed by scanning electron microscopy and chemical analyses (XEDS). A large effect on the reduction time was observed by increasing the temperature from 1 773 K to 1 823 K for pellets without Fe-Si addition: around 4 times faster at 1 823 K than at 1 773 K for reaction fraction close to one. However, when the temperature was further increased from 1 823 K to 1 873 K the kinetics improved by double. At 1 773 K, the addition of 2% of ferro-silicon in the pellet resulted in an increasing reaction rate of around 6 times, in comparison with agglomerate without it. The addition of fluxing agents (silica and lime), which form initial slag before the reduction is completed, impaired the full reduction. These pellets became less porous after the reduction process.
Resumo:
Witches` broom is a severe disease of Theobroma cacao L. (cacao), caused by the basidiomycete Moniliophthora perniciosa. The use of resistant cultivars is the ultimate method of control, but there are limited sources of resistance. Further, resistance from the most widely used source (`Scavina 6`) has been overcome after a few years of deployment. New sources of resistance have been intensively searched for in the Amazon basin. Here, we evaluated for witches` broom resistance, cacao accessions from various natural cacao populations originally collected in the Brazilian Amazon. Resistance of 43 families was evaluated under nursery and/or field conditions by artificial or natural infection, respectively, based on disease incidence. Screening for resistance by artificial inoculation under nursery conditions appeared to be efficient in identifying these novel resistance sources, confirmed by natural field evaluation over a nine-year period. The increase in natural field infection of `Scavina 6` was clearly demonstrated. Among the evaluated families with the least witches` broom incidence, there were accessions originally collected from distinct river basins, including the Jamari river (`CAB 0371`; `CAB 0388`; `CAB 0392`; and `CAB 0410`); Acre (`CAB 0169`); Javari (`CAB 0352`); Solimes (`CAB 0270`); and from the Purus river basin, the two most outstanding resistant accessions, `CAB 0208` and `CAB 0214`. The large genetic diversity found in cacao populations occurring at river basins from Acre and Amazonas states, Brazil, increased the chance that the selected resistant accessions would be genetically more dissimilar, and represent distinct sources of resistance to M. perniciosa from `Scavina 6`.
Resumo:
From a genomic enriched library, we developed 27 primer pairs from microsatellite flanking sequences for Colletotrichum acutatum, associated to postbloom fruit drop disease on citrus. Loci were characterized using 40 monosporic C. acutatum isolates. Nine primer pairs successfully amplified polymorphic microsatellite regions, with 3-6 alleles per locus, and mean heterozygosities ranging 0.093-0.590 across loci. The suitability of these primers was investigated in four Colletotrichum species as well. These microsatellite markers will be useful for genetic analyses and epidemiological studies of C. acutatum.
Resumo:
Due to the low chemical control effectiveness of citrus black spot, caused by the fungus Guignardia citricarpa at postharvest, and to the search for alternative control methods, this study aimed to evaluate the in vitro effect of volatile organic compounds (VOCs), produced by yeast Saccharomyces cerevisiae, on G. citricarpa. It was observed that the yeast strains evaluated acted as antagonists by VOC production, whose maximum inhibitory capacity was as high as 87.2%. The presence of fermentable carbon sources in the medium was essential for the bioactive VOC production by the yeast. The analysis of VOCs produced in PDA medium by SPME-GC-MS indicated the presence of high quantities of alcohols as well as esters. An artificial VOC mixture prepared on the basis of the composition of the VOCs mimicked the inhibitory effects of the natural VOCs released by S. cerevisiae. Thus, the VOCs produced by the yeast or the artificial mixtures can be a promising control method for citrus black spot or others postharvest diseases.
Resumo:
Citrus post-bloom fruit drop (caused by Colletotrichum acutatum) frequently occurs in the southwestern region of So Paulo State, Brazil. A survey of Colletotrichum isolates associated with symptoms of post-bloom fruit drop in So Paulo State showed C. gloeosporioides in addition to C. acutatum. The objectives of this study were to confirm the identification of C. gloeosporioides isolated from symptomatic citrus flowers, to test the pathogenicity of C. gloeosporioides isolates, to compare the development of disease caused by C. gloeosporioides and C. acutatum, and to determine the frequency of C. gloeosporioides in a sample of isolates obtained from symptomatic flowers in different regions of So Paulo State. Through the use of species-specific primers by PCR, 17.3% of 139 isolates were C. gloeosporioides, and the remaining 82.7% were C. acutatum. The pathogenicity tests, carried out in 3-year old potted plants of sweet oranges indicated that both species caused typical symptoms of the disease including blossom blight and persistent calyces. Incubation periods (3.5 and 3.9 days, respectively, for C. acutatum and C. gloeosporioides) and fruit sets (6.7 and 8.5%, respectively for C. acutatum and C. gloeosporioides) were similar for both species. The incidences of blossom blight and persistent calyces were higher on plants inoculated with C. acutatum than in those inoculated with C. gloeosporioides. Conidial germination was similar for both species under different temperatures and wetness periods. Under optimal conditions, appressorium formation and melanisation were higher for C. gloeosporioides than for C. acutatum. These results indicated that Colletotrichum gloeosporioides is a new causal agent of post-bloom fruit drop.
Resumo:
Pseudocercospora griseola (Sacc.) Crous &. Braun is a widespread fungal phytopathogen that is responsible for angular leaf spot in the common bean (Phaseolus vulgaris L.). A number of fungal phytopathogens have been shown to harbour mycoviruses, and this possibility was investigated in populations of Pseudocercospora griseola. The total nucleic acid extracts of 61 fungal isolates were subjected to agarose gel electrophoresis. Small fragments (800-4800 bp) could be identified in 42 of the samples. The presence of dsRNA in isolate Ig838 was confirmed by treatment of total nucleic acid with DNase, RNase A, and nuclease S I. Transmission electron microscopy revealed the presence of viral-like particles 40 nm in diameter in the mycelia of 2 fungal isolates, namely 29-3 and Ig838. The transmission of dsRNA by means of conidia was 100% for isolate 29-3, but there was loss of 1-6 fragments of dsRNA in monosporic colonies of isolate Ig848. Cycloheximide treatment failed to inhibit the mycovirus in isolate 29-3, but proved efficient in the elimination of the 2.2, 2.0, 1.8, 1.2 and 1.0 kb fragments in 2 colonies of isolate Ig848. The occurrence of a mycovirus in Pseudocercospora griseola was demonstrated for the first time in the present study.
Resumo:
Guttiferone-A (GA) is a natural occurring polyisoprenylated benzophenone with cytotoxic action in vitro and anti-tumor action in rodent models. We addressed a potential involvement of mitochondria in GA toxicity (1-25 mu M) toward cancer cells by employing both hepatic carcinoma (HepG2) cells and succinate-energized mitochondria, isolated from rat liver. In HepG2 cells GA decreased viability, dissipated mitochondrial membrane potential, depleted ATP and increased reactive oxygen species (ROS) levels. In isolated rat-liver mitochondria GA promoted membrane fluidity increase, cyclosporine A/EGTA-insensitive membrane permeabilization, uncoupling (membrane potential dissipation/state 4 respiration rate increase), Ca(2+) efflux, ATP depletion, NAD(P)H depletion/oxidation and ROS levels increase. All effects in cells, except mitochondrial membrane potential dissipation, as well as NADPH depletion/oxidation and permeabilization in isolated mitochondria, were partly prevented by the a NAD(P)H regenerating substrate isocitrate. The results suggest the following sequence of events: 1) GA interaction with mitochondrial membrane promoting its permeabilization; 2) mitochondrial membrane potential dissipation; 3) NAD(P)H oxidation/depletion due to inability of membrane potential-sensitive NADP(+) transhydrogenase of sustaining its reduced state; 4) ROS accumulation inside mitochondria and cells; 5) additional mitochondrial membrane permeabilization due to ROS; and 6) ATP depletion. These GA actions are potentially implicated in the well-documented anti-cancer property of GA/structure related compounds. (C) 2011 Elsevier Inc. All rights reserved.