873 resultados para Reinforced concrete joints


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A series of tests on filigree slab joints was performed with the aim of assessing whether such joints can be reliably used in the construction of two-way spanning reinforced concrete slabs. The test results were compared with code requirements. Adequate joint performance is shown to be achievable when the joints are appropriately detailed. Further research is recommended for the formulation of a more generic understanding when the design parameters are varied from those studied in this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This thesis is concerned with the experimental and theoretical investigation into the compression bond of column longitudinal reinforcement in the transference of axial load from a reinforced concrete column to a base. Experimental work includes twelve tests with square twisted bars and twenty four tests with ribbed bars. The effects of bar size, anchorage length in the base, plan area of the base, provision of bae tensile reinforcement, links around the column bars in the base, plan area of column and concrete compressive strength were investigated in the tests. The tests indicated that the strength of the compression anchorage of deformed reinforcing steel in the concrete was primarily dependent on the concrete strength and the resistance to bursting, which may be available within the anchorage . It was shown in the tests without concreted columns that due to a large containment over the bars in the foundation, failure occurred due to the breakdown of bond followed by the slip of the column bars along the anchorage length. The experimental work showed that the bar size , the stress in the bar, the anchorage length, provision of the transverse steel and the concrete compressive strength significantly affect the bond stress at failure. The ultimate bond stress decreases as the anchorage length is increased, while the ultimate bond stress increases with increasing each of the remainder parameters. Tests with concreted columns also indicated that a section of the column contributed to the bond length in the foundation by acting as an extra anchorage length. The theoretical work is based on the Mindlin equation( 3), an analytical method used in conjunction with finite difference calculus. The theory is used to plot the distribution of bond stress in the elastic and the elastic-plastic stage of behaviour. The theory is also used to plot the load-vertical displacement relationship of the column bars in the anchorage length, and also to determine the theoretical failure load of foundation. The theoretical solutions are in good agreement with the experimental results and the distribution of bond stress is shown to be significantly influenced by the bar stiffness factor K. A comparison of the experimental results with the current codes shows that the bond stresses currently used are low and in particular, CPIlO(56) specifies very conservative design bond stresses .

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reinforced concrete buildings in low-to-moderate seismic zones are often designed only for gravity loads in accordance with the non-seismic detailing provisions. Deficient detailing of columns and beam-column joints can lead to unpredictable brittle failures even under moderate earthquakes. Therefore, a reliable estimate of structural response is required for the seismic evaluation of these structures. For this purpose, analytical models for both interior and exterior slab-beam-column subassemblages and for a 1/3 scale model frame were implemented into the nonlinear finite element platform OpenSees. Comparison between the analytical results and experimental data available in the literature is carried out using nonlinear pushover analyses and nonlinear time history analysis for the subassemblages and the model frame, respectively. Furthermore, the seismic fragility assessment of reinforced concrete buildings is performed on a set of non-ductile frames using nonlinear time history analyses. The fragility curves, which are developed for various damage states for the maximum interstory drift ratio are characterized in terms of peak ground acceleration and spectral acceleration using a suite of ground motions representative of the seismic hazard in the region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sismos recentes comprovam a elevada vulnerabilidade dos edifícios existentes de betão armado. A resposta das estruturas aos sismos é fortemente condicionada pelas características da aderência aço-betão, que exibe degradação das propriedades iniciais quando sujeitas a carregamentos cíclicos e alternados. Este fenómeno é ainda mais gravoso para elementos com armadura lisa, predominantes na maioria das estruturas construídas até à década de 70 nos países do sul da Europa. A prática corrente de conceção, dimensionamento e pormenorização das estruturas antigas leva a que tenham características de comportamento e níveis de segurança associados não compatíveis com as exigências atuais. Os estudos realizados sobre o comportamento cíclico de elementos estruturais de betão armado com armadura lisa são ainda insuficientes para a completa caracterização deste tipo de elementos. Esta tese visou a caraterização da relação tensão de aderência versus escorregamento para elementos estruturais com armadura lisa e o estudo da resposta cíclica de pilares e nós viga-pilar de betão armado com armadura lisa. Foram realizados dez séries de ensaios de arrancamento (nove monotónicos e um cíclico) em provetes com varões lisos. Os resultados destes ensaios permitiram propor novas expressões empíricas para a estimativa dos parâmetros usados num modelo disponível na literatura para representação da relação tensão de aderência versus escorregamento. É ainda proposto um novo modelo monotónico para a relação tensão de aderência versus escorregamento que representa melhor a resposta após a resistência máxima de aderência. Uma campanha de ensaios unidirecionais em pilares e nós viga-pilar foi também realizada com o objetivo principal de caracterizar o comportamento cíclico deste tipo de elementos. No total foram realizados oito ensaios em pilares, sete ensaios em nós viga-pilar interiores e seis ensaios em nós viga-pilar exteriores representativos de estruturas antigas de betão armado com armadura lisa. Os resultados experimentais permitiram avaliar a influência do escorregamento e estudar o mecanismo de corte em nós e a evolução dos danos para elementos com armadura lisa. Com base nos resultados experimentais foi proposta uma adaptação na expressão do Eurocódigo 8-3 para o cálculo da capacidade última de rotação de elementos com armadura lisa. Foi também desenvolvido um estudo paramétrico, com diferentes estratégias de modelação não linear, para a simulação da resposta de pilares considerando o escorregamento da armadura lisa. Por último, foi proposto um novo modelo simplificado trilinear para o aço que contempla o efeito do escorregamento da armadura lisa.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bomb attacks carried out by terrorists, targeting high occupancy buildings, have become increasingly common in recent times. Large numbers of casualties and property damage result from overpressure of the blast followed by failing of structural elements. Understanding the blast response of multi-storey buildings and evaluating their remaining life have therefore become important. Response and damage analysis of single structural components, such as columns or slabs, to explosive loads have been examined in the literature, but the studies on blast response and damage analysis of structural frames in multi-storey buildings is limited and this is necessary for assessing the vulnerability of them. This paper investigates the blast response and damage evaluation of reinforced concrete (RC) frames, designed for normal gravity loads, in order to evaluate their remaining life. Numerical modelling and analysis were carried out using the explicit finite element software, LS DYNA. The modelling and analysis takes into consideration reinforcement details together and material performance under higher strain rates. Damage indices for columns are calculated based on their residual and original capacities. Numerical results generated in the can be used to identify relationships between the blast load parameters and the column damage. Damage index curve will provide a simple means for assessing the damage to a typical multi-storey building RC frame under an external bomb circumstance.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a detailed description of the influence of critical parameters that govern the vulnerability of columns under lateral impact loads. Numerical simulations are conducted by using the Finite Element program LS-DYNA, incorporating steel reinforcement, material models and strain rate effects. A simplified method based on impact pulse generated from full scale impact tests is used for impact reconstruction and effects of the various pulse loading parameters are investigated under low to medium velocity impacts. A constitutive material model which can simulate failures under tri-axial state of stresses is used for concrete. Confinement effects are also introduced to the numerical simulation and columns of Grade 30 to 50 concrete under pure axial loading are analysed in detail. This research confirmed that the vulnerability of the axially loaded columns can be mitigated by reducing the slenderness ratio and concrete grade, and by choosing the design option with a minimal amount of longitudinal steel. Additionally, it is evident that approximately a 50% increase in impact capacity can be gained for columns in medium rise buildings by enhancing the confinement effects alone. Results also indicated that the ductility as well as the mode of failure under impact can be changed with the volumetric ratio of lateral steel. Moreover, to increase the impact capacity of the vulnerable columns, a higher confining stress is required. The general provisions of current design codes do not sufficiently cover this aspect and hence this research will provide additional guidelines to overcome the inadequacies of code provisions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Iconic and significant buildings are the common target of bombings by terrorists causing large numbers of casualties and extensive property damage. Recent incidents were external bomb attacks on multi-storey buildings with reinforced concrete frames. Under a blast load circumstance, crucial damage initiates at low level storeys in a building and may then lead to a progressive collapse of whole or part of the structure. It is therefore important to identify the critical initial influence regions along the height, width and depth of the building exposed to blast effects and the structure response in order to assess the vulnerability of the structure to disproportionate and progressive collapse. This paper discusses the blast response and the propagation of its effects on a two dimensional reinforced concrete (RC) frame, designed to withstand normal gravity loads. The explicit finite element code, LS DYNA is used for the analysis. A complete RC portal frame seven storeys by six bays is modelled with reinforcement details and appropriate materials to simulate strain rate effects. Explosion loads derived from standard manuals are applied as idealized triangular pressures on the column faces of the numerical models. The analysis reports the influence of blast propagation as displacements and material yielding of the structural elements in the RC frame. The effected regions are identified and classified according to the load cases. This information can be used to determine the vulnerability of multi-storey RC buildings to various external explosion scenarios and designing buildings to resist blast loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

n design of bridge structures, it is common to adopt a 100 year design life. However, analysis of a number of case study bridges in Australia has indicated that the actual design life can be significantly reduced due to premature deterioration resulting from exposure to aggressive environments. A closer analysis of the cost of rehabilitation of these structures has raised some interesting questions. What would be the real service life of a bridge exposed to certain aggressive environments? What is the strategy of conducting bridge rehabilitation? And what are the life cycle costs associated with rehabilitation? A research project funded by the CRC for Construction Innovation in Australia is aimed at addressing these issues. This paper presents a concept map for assisting decision makers to appropriately choose the best treatment for bridge rehabilitation affected by premature deterioration through exposure to aggressive environments in Australia. The decision analysis is referred to a whole of life cycle cost analysis by considering appropriate elements of bridge rehabilitation costs. In addition, the results of bridges inspections in Queensland are presented

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shrinkage cracking is commonly observed in concrete flat structures such as highway pavements, slabs, and bridge decks. Crack spacing due to shrinkage has received considerable attention for many years [1-3]. However, some aspects concerning the mechanism of crack spacing still remain un-clear. Though it is well known that the interval of the cracks generally falls with a range, no satisfactory explanation has been put forward as to why the minimum spacing exists.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Multi-storey buildings are highly vulnerable to terrorist bombing attacks in various parts of the world. Large numbers of casualties and extensive property damage result not only from blast overpressure, but also from the failing of structural components. Understanding the blast response and damage consequences of reinforced concrete (RC) building frames is therefore important when assessing multi-storey buildings designed to resist normal gravity loads. However, limited research has been conducted to identify the blast response and damage of RC frames in order to assess the vulnerability of entire buildings. This paper discusses the blast response and evaluation of damage of three-dimension (3D) RC rigid frame under potential blast loads scenarios. The explicit finite element modelling and analysis under time history blast pressure loads were carried out by LS DYNA code. Complete 3D RC frame was developed with relevant reinforcement details and material models with strain rate effect. Idealised triangular blast pressures calculated from standard manuals are applied on the front face of the model in the present investigation. The analysis results show the blast response, as displacements and material yielding of the structural elements in the RC frame. The level of damage is evaluated and classified according to the selected load case scenarios. Residual load carrying capacities are evaluated and level of damage was presented by the defined damage indices. This information is necessary to determine the vulnerability of existing multi-storey buildings with RC frames and to identify the level of damage under typical external explosion environments. It also provides basic guidance to the design of new buildings to resist blast loads.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Frontal columns in buildings and columns in car parks are vulnerable to vehicular impacts. This paper treats the impact response of such concrete columns under vehicular loads and the use of polymer wrap to enhance their impact capacity. Comprehensive dynamic computer simulation techniques are used along with strain rate effects and hour glass control to evaluate the impact response. Results indicate the effectiveness of wraps in enhancing the impact capacity of these columns.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Differential axial shortening in vertical members of reinforced concrete high-rise buildings occurs due to shrinkage, creep and elastic shortening, which are time dependent effects of concrete. This has to be quantified in order to make adequate provisions and mitigate its adverse effects. This paper presents a novel procedure for quantifying the axial shortening of vertical members using the variations in vibration characteristics of the structure, in lieu of using gauges which can pose problems in use during and after the construction. This procedure is based on the changes in the modal flexiblity matrix which is expressed as a function of the mode shapes and the reciprocal of the natural frequencies. This paper will present the development of this novel procedure.