833 resultados para Rehabilitation of amputees
Resumo:
Introduction: Lower-limb amputations are a serious adverse consequence of lifestyle related chronic conditions and a serious concern among the aging population in Australia. Lower limb amputations have severe personal, social and economic impacts on the individual, healthcare system and broader community. This study aimed to address a critical gap in the research literature by investigating the physical functioning and social characteristics of lower limb amputees at discharge from tertiary hospital inpatient rehabilitation. Method: A cohort study was implemented among patients with lower limb amputations admitted to a Geriatric Assessment and Rehabilitation Unit for rehabilitation at a tertiary hospital. Conventional descriptive statistics were used to examine patient demographic, physical functioning and social living outcomes recorded for patients admitted between 2005 and 2011. Results: A total of 423 admissions occurred during the study period, 313 (74%) were male. This sample included admissions for left (n = 189, 45%), right (n = 220, 52%) and bilateral (n = 14, 3%) lower limb amputations, with 15 (3%) patients dying whilst an inpatient. The mean (standard deviation) age was 65 (13.9) years. Amputations attributed to vascular causes accounted for 333 (78%) admissions; 65 (15%) of these had previously had an amputation. The mean (SD) length of stay in the rehabilitation unit was 56 (42) days. Prior to this admission, 123 (29%) patients were living alone, 289 (68%) were living with another and 3 (0.7%) were living in residential care. Following this amputation related admission, 89 (21%) patients did not return to their prior living situation. Of those admitted, 187 (44%) patients were discharged with a lower limb prosthesis. Conclusion: The clinical group is predominately older adults. The ratio of males to females was approximately 3:1. Over half did not return to walking and many were not able to return to their prior accommodation. However, few patients died during their admission.
Resumo:
The desire to solve problems caused by socket prostheses in transfemoral amputees and the acquired success of osseointegration in the dental application has led to the introduction of osseointegration in the orthopedic surgery. Since its first introduction in 1990 in Gothenburg Sweden the osseointegrated (OI) orthopedic fixation has proven several benefits[1]. The surgery consists of two surgical procedures followed by a lengthy rehabilitation program. The rehabilitation program after an OI implant includes a specific training period with a short training prosthesis. Since mechanical loading is considered to be one of the key factors that influence bone mass and the osseointegration of bone-anchored implants, the rehabilitation program will also need to include some form of load bearing exercises (LBE). To date there are two frequently used commercially available human implants. We can find proof in the literature that load bearing exercises are performed by patients with both types of OI implants. We refer to two articles, a first one written by Dr. Aschoff and all and published in 2010 in the Journal of Bone and Joint Surgery.[2] The second one presented by Hagberg et al in 2009 gives a very thorough description of the rehabilitation program of TFA fitted with an OPRA implant. The progression of the load however is determined individually according to the residual skeleton’s quality, pain level and body weight of the participant.[1] Patients are using a classical bathroom weighing scale to control the load on the implant during the course of their rehabilitation. The bathroom scale is an affordable and easy-to-use device but it has some important shortcomings. The scale provides instantaneous feedback to the patient only on the magnitude of the vertical component of the applied force. The forces and moments applied along and around the three axes of the implant are unknown. Although there are different ways to assess the load on the implant for instance through inverse dynamics in a motion analysis laboratory [3-6] this assessment is challenging. A recent proof- of-concept study by Frossard et al (2009) showed that the shortcomings of the weighing scale can be overcome by a portable kinetic system based on a commercial transducer[7].
Resumo:
This paper compares and reviews the recommendations and contents of the guide for the design and construction of externally bonded FRP systems for strengthening concrete structures reported by ACI committee 440 and technical report of Externally bonded FRP reinforcement for RC structures (FIB 14) in application of carbon fiber reinforced polymer (CFRP) composites in strengthening of an aging reinforced concrete headstock. The paper also discusses the background, limitations, strengthening for flexure and shear, and other related issues in use of FRP for strengthening of a typical reinforced concrete headstock structure such as durability, de-bonding, strengthening limits, fire and environmental conditions. A case study of strengthening of a bridge headstock using FRP composites is presented as a worked example in order to illustrate and compare the differences between these two design guidelines when used in conjunction with the philosophy of the Austroads (1992) bridge design code.
Resumo:
Bone-anchored prostheses, relying on implants to attach the prosthesis directly to the residual skeleton, are the ultimate resort for patients with transfemoral amputations (TFA) experiencing severe socket discomfort. The first patient receiving a bone-anchored prosthesis underwent the surgery in 1990 in the Sahlgrenska University Hospital (Sweden). To date, there are two commercially available implants: OPRA (Integrum, Sweden) and ILP (Orthodynamics, Germany). The key to success to this technique is a firm bone-implant bonding, depending on increasing mechanical stress applied daily during load bearing exercises (LBE). The loading data could be analysed through different biomechanical variables. The intra-tester reliability of these exercises will be presented here. Moreover the effect of increase of loading, axes of application of the load and body weight as well as the difference between force and moment variables will be discussed.
Resumo:
Osseointegration has been introduced in the orthopaedic surgery in the 1990’s in Gothenburg (Sweden). To date, there are two frequently used commercially available human implants: the OPRA (Integrum, Sweden) and ILP (Orthodynamics, Germany) systems. The rehabilitation program with both systems include some form of static load bearing exercises. These latter involved following a load progression that is monitored by the bathroom scale, providing only the load applied on the vertical axis. The loading data could be analysed through different biomechanical variables. For instance, the load compliance, corresponding to the difference between the load recommended (LR) and the load actually applied on the implant, will be presented here.
Resumo:
Individuals with limb amputation fitted with conventional socket-suspended prostheses often experience socket-related discomfort leading to a significant decrease in quality of life. Bone-anchored prostheses are increasingly acknowledged as viable alternative method of attachment of artificial limb. In this case, the prosthesis is attached directly to the residual skeleton through a percutaneous fixation. To date, a few osseointegration fixations are commercially available. Several devices are at different stages of development particularly in Europe and the US.[1-15] Clearly, surgical procedures are currently blooming worldwide. Indeed, Australia and Queensland in particular have one of the fastest growing populations. Previous studies involving either screw-type implants or press-fit fixations for bone-anchorage have focused on fragmented biomechanics aspects as well as the clinical benefits and safety of the procedure. However, very few publications have synthetized this information and provided an overview of the current developments in bone-anchored prostheses worldwide, let alone in Australia. The purposes of the presentation will be: 1. To provide an overview of the state-of-art developments in bone-anchored prostheses with as strong emphasis on the design of fixations, treatment, benefits, risks as well as future opportunities and challenges, 2. To present the current international developments of procedures for bone-anchored prostheses in terms of numbers of centers, number of cases and typical case-mix, 3. To highlight the current role Australia is playing as a leader worldwide in terms of growing population, broadest range of case-mix, choices of fixations, development of reimbursement schemes, unique clinical outcome registry for evidence-based practice, cutting-edge research, consumer demand and general public interest.
Resumo:
This paper presents an initiative taken in Pakistan for the rehabilitation of the deaf community, enabled by the use of technology. iPSL is a system that primarily aims at facilitating communication between the hearing and the deaf community in Pakistan. There is a twofold approach to achieve this. The first dimension is to implement a system that can translate signs made by deaf into natural language sentences. The second dimension is to implement tools that enable hearing people to understand and learn sign language by converting natural language sentences into sign language. This paper presents the progress made in the project so far in terms of design, implementation and evaluation. © ACM 2009.
Resumo:
This article presents an overview of the project on Rehabilitation of Fisheries and Aquaculture in Tsunami-affected Coastal Communities in Aceh Province. Building on the research results from the recently completed projects detailed in the previous articles, this project shall synthesize information on coastal fishing communities and resources in order to develop site-specific management options to support rehabilitation of fisheries and aquaculture.