914 resultados para Regulatory T cells, GARP


Relevância:

100.00% 100.00%

Publicador:

Resumo:

An inverse association exists between some bacterial infections and the prevalence of asthma. We investigated whether Streptococcus pneumoniae infection protects against asthma using mouse models of ovalbumin (OVA)-induced allergic airway disease (AAD). Mice were intratracheally infected or treated with killed S. pneumoniae before, during or after OVA sensitisation and subsequent challenge. The effects of S. pneumoniae on AAD were assessed. Infection or treatment with killed S. pneumoniae suppressed hallmark features of AAD, including antigen-specific T-helper cell (Th) type 2 cytokine and antibody responses, peripheral and pulmonary eosinophil accumulation, goblet cell hyperplasia, and airway hyperresponsiveness. The effect of infection on the development of specific features of AAD depended on the timing of infection relative to allergic sensitisation and challenge. Infection induced significant increases in regulatory T-cell (Treg) numbers in lymph nodes, which correlated with the degree of suppression of AAD. Tregs reduced T-cell proliferation and Th2 cytokine release. The suppressive effects of infection were reversed by anti-CD25 treatment. Respiratory infection or treatment with S. pneumoniae attenuates allergic immune responses and suppresses AAD. These effects may be mediated by S. pneumoniae-induced Tregs. This identifies the potential for the development of therapeutic agents for asthma from S. pneumoniae.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Introduction Sphingosine-1-phosphate receptor 1 (S1P1) is crucial for regulation of immunity and bone metabolism. This study aimed to investigate the expression of S1P1 in rat periapical lesions and its relationship with receptor activator of nuclear factor kappa B ligand (RANKL) and regulatory T (Treg) cells. Methods Periapical lesions were induced by pulp exposure in the first lower molars of 55 Wistar rats. Thirty rats were killed on days 0, 7, 14, 21, 28, and 35, and their mandibles were harvested for x-ray imaging, micro–computed tomography scanning, histologic observation, immunohistochemistry, enzyme histochemistry, and double immunofluorescence analysis. The remaining 25 rats were killed on days 0, 14, 21, 28, and 35, and mandibles were harvested for flow cytometry. Results The volume and area of the periapical lesions increased from day 0 to day 21 and then remained comparably stable after day 28. S1P1-positive cells were observed in the inflammatory periapical regions; the number of S1P1-positive cells peaked at day 14 and then decreased from day 21 to day 35. The distribution of S1P1-positive cells was positively correlated with the dynamics of RANKL-positive cells but was negatively correlated with that of Treg cells. Conclusions S1P1 expression was differentially correlated with RANKL and Treg cell infiltration in the periapical lesions and is therefore a contributing factor to the pathogenesis of such lesions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The role of the immune system is to protect an organism against pathogens while maintaining tolerance against self. T cells are an essential component of the immune system and they develop in the thymus. The AIRE (autoimmune regulator) gene product plays an important role in T cell development, as it promotes expression of peripheral tissue antigens in the thymus. Developing T cells, thymocytes, which recognize self-antigens with high affinity are deleted. However, this deletion process is not perfect and not all autoreactive T cells are destroyed. When the distinction between self and non-self fails, tolerance breaks and the immune system attacks the host s own tissues. This results in autoimmunity. Regulatory T cells contribute to the maintenance of self-tolerance. They can actively suppress the function of autoreactive cells. Several populations of cells with regulatory properties have been described, but the best characterized population is the natural regulatory T cells (Treg cells), which develop in the thymus and express the transcription factor FOXP3. The thymic development of Treg cells in humans is the subject of this thesis. Thymocytes at different developmental stages were analyzed using flow cytometry. The CD4-CD8- double-negative (DN) thymocytes are the earliest T cell precursors in the T cell lineage. My results show that the Treg cell marker FOXP3 is up-regulated already in a subset of these DN thymocytes. FOXP3+ cells were also found among the more mature CD4+CD8+ double-positive (DP) cells and among the CD4+ and CD8+ single-positive (SP) thymocytes. The different developmental stages of the FOXP3+ thymocytes were isolated and their gene expression examined by quantitative PCR. T cell receptor (TCR) repertoire analysis was used to compare these different thymocyte populations. My data show that in humans commitment to the Treg cell lineage is an early event and suggest that the development of Treg cells follows a linear developmental pathway, FOXP3+ DN precursors evolving through the DP stage to become mature CD4+ Treg cells. Most T cells have only one kind of TCR on their cell surface, but a small fraction of cells expresses two different TCRs. My results show that the expression of two different TCRs is enriched among Treg cells. Furthermore, both receptors were capable of transmitting signals when bound by a ligand. By extrapolating flow cytometric data, it was estimated that the majority of peripheral blood Treg cells are indeed dual-specific. The high frequency of dual-specific cells among human Treg cells suggests that dual-specificity has a role in directing these cells to the Treg cell lineage. It is known that both genetic predisposition and environmental factors influence the development of autoimmunity. It is also known that the dysfunction or absence of Treg cells leads to the development of autoimmune manifestations. APECED (autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy) is a rare monogenic autoimmune disease, caused by mutations in the AIRE gene. In the absence of AIRE gene product, deletion of self-specific T cells is presumably disturbed and autoreactive T cells escape to the periphery. I examined whether Treg cells are also affected in APECED. I found that the frequency of FOXP3+ Treg cells and the level of FOXP3 expression were significantly lower in APECED patients than in controls. Additionally, when studied in cell cultures, the suppressive capacity of the patients' Treg cells was impaired. Additionally, repertoire analysis showed that the TCR repertoire of Treg cells was altered. These results suggest that AIRE contributes to the development of Treg cells in humans and the selection of Treg cells is impaired in APECED patients. In conclusion, my thesis elucidates the developmental pathway of Treg cells in humans. The differentiation of Tregs begins early during thymic development and both the cells dual-specificity and AIRE probably affect the final commitment of Treg cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs) play a critical role in the maintenance of immune tolerance. Intravenous immunoglobulin (IVIg), a therapeutic preparation of normal pooled human IgG, expands Tregs in various experimental models and in patients. However, the cellular and molecular mechanisms by which IVIg expands Tregs are relatively unknown. As Treg expansion in the periphery requires signaling by antigen-presenting cells such as dendritic cells (DCs) and IVIg has been demonstrated to modulate DC functions, we hypothesized that IVIg induces distinct signaling events in DCs that subsequently mediate Treg expansion. We demonstrate that IVIg expands Tregs via induction of cyclooxygenase (COX)-2-dependent prostaglandin E2 (PGE(2)) in human DCs. However, costimulatory molecules of DCs such as programmed death ligands, OX40 ligand, and inducible T-cell costimulator ligands were not implicated. Inhibition of PGE(2) synthesis by COX-2 inhibitors prevented IVIg-mediated Treg expansion in vitro and significantly diminished IVIg-mediated Treg expansion in vivo and protection from disease in experimental autoimmune encephalomyelitis model. IVIg-mediated COX-2 expression, PGE(2) production, and Treg expansion were mediated in part via interaction of IVIg and F(ab('))(2) fragments of IVIg with DC-specific intercellular adhesion molecule-3-grabbing nonintegrin. Our results thus uncover novel cellular and molecular mechanism by which IVIg expands Tregs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recent evidence suggests that in addition to their well known stimulatory properties, dendritic cells (DCs) may play a major role in peripheral tolerance. It is still unclear whether a distinct subtype or activation status of DC exists that promotes the differentiation of suppressor rather than effector T cells from naive precursors. In this work, we tested whether the naturally occurring CD4+ CD25+ regulatory T cells (Treg) may control immune responses induced by DCs in vivo. We characterized the immune response induced by adoptive transfer of antigen-pulsed mature DCs into mice depleted or not of CD25+ cells. We found that the development of major histocompatibility complex class I and II-restricted interferon gamma-producing cells was consistently enhanced in the absence of Treg. By contrast, T helper cell (Th)2 priming was down-regulated in the same conditions. This regulation was independent of interleukin 10 production by DCs. Of note, splenic DCs incubated in vitro with Toll-like receptor ligands (lipopolysaccharide or CpG) activated immune responses that remained sensitive to Treg function. Our data further show that mature DCs induced higher cytotoxic activity in CD25-depleted recipients as compared with untreated hosts. We conclude that Treg naturally exert a negative feedback mechanism on Th1-type responses induced by mature DCs in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND AND AIMS: Cytotoxic T lymphocyte-associated antigen 4 (CTLA-4) has been shown to act as a negative regulator of T cell function and has been implicated in the regulation of T helper 1 (Th1)/Th2 development and the function of regulatory T cells. Tests were carried out to determine whether anti-CTLA-4 treatment would alter the polarisation of naive T cells in vivo. METHODS: Mice were treated with anti-CTLA-4 monoclonal antibody (mAb) (UC10-4F10) at the time of immunisation or colonic instillation of trinitrobenzene sulfonic acid (TNBS). The cytokines produced by lymph node cells after in vitro antigenic stimulation and the role of indoleamine 2,3 dioxygenase (IDO) and of interleukin-10 (IL-10) were tested, and the survival of mice was monitored. RESULTS: Injection of anti-CTLA-4 mAb in mice during priming induced the development of adaptive CD4(+) regulatory T cells which expressed high levels of ICOS (inducible co-stimulator), secreted IL-4 and IL-10. This treatment inhibited Th1 memory responses in vivo and repressed experimental intestinal inflammation. The anti-CTLA-4-induced amelioration of disease correlated with IDO expression and infiltration of ICOS(high) Foxp3(+) T cells in the intestine, suggesting that anti-CTLA-4 acted indirectly through the development of regulatory T cells producing IL-10 and inducing IDO. CONCLUSIONS: These observations emphasise the synergy between IL-10 and IDO as anti-inflammatory agents and highlight anti-CTLA-4 treatment as a potential novel immunotherapeutic approach for inducing adaptive regulatory T cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

100.00% 100.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

100.00% 100.00%

Publicador:

Resumo:

CD4+CD25highFOXP3+ regulatory T (Treg) cells have recently been found at elevated levels in the peripheral blood of tuberculosis patients, compared to Mycobacterium tuberculosis latently infected (LTBI) healthy individuals and non-infected controls. Here, we show that CD4+CD25highFOXP3+ T lymphocytes can be expanded in vitro from peripheral blood mononuclear cells (PBMC) of LTBI individuals, but not of uninfected controls by incubating them with BCG in the presence of TGF-beta. These expanded cells from the PBMC of LTBI subjects expressed CTLA-4, GITR and OX-40, but were CD127low/- and have therefore the phenotype of Treg cells. In addition, they inhibited in a dose-dependant manner the proliferation of freshly isolated mononuclear cells in response to polyclonal stimulation, indicating that they are functional Treg lymphocytes. In contrast, incubation of the PBMC with BCG alone preferentially induced activated CD4+ T cells, expressing CD25 and/or CD69 and secreting IFN-gamma. These results show that CD4+CD25highFOXP3+ Treg cells can be expanded or induced in the peripheral blood of LTBI individuals in conditions known to predispose to progression towards active tuberculosis and may therefore play an important role in the pathogenesis of the disease.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

RATIONALE: Tuberculosis (TB) remains a leading cause of death, and the role of T-cell responses to control Mycobacterium tuberculosis infections is well recognized. Patients with latent TB infection develop strong IFN-gamma responses to the protective antigen heparin-binding hemagglutinin (HBHA), whereas patients with active TB do not. OBJECTIVES: We investigated the mechanism of this difference and evaluated the possible involvement of regulatory T (Treg) cells and/or cytokines in the low HBHA T-cell responses of patients with active TB. METHODS: The impact of anti-transforming growth factor (TGF)-beta and anti-IL-10 antibodies and of Treg cell depletion on the HBHA-induced IFN-gamma secretion was analyzed, and the Treg cell phenotype was characterized by flow cytometry. MEASUREMENTS AND MAIN RESULTS: Although the addition of anti-TGF-beta or anti-IL-10 antibodies had no effect on the HBHA-induced IFN-gamma secretion in patients with active TB, depletion of CD4(+)CD25(high)FOXP3(+) T lymphocytes resulted in the induction by HBHA of IFN-gamma concentrations that reached levels similar to those obtained for latent TB infection. No effect was noted on the early-secreted antigen target-6 or candidin T-cell responses. CONCLUSIONS: Specific CD4(+)CD25(high)FOXP3(+) T cells depress the T-cell-mediated immune responses to the protective mycobacterial antigen HBHA during active TB in humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

info:eu-repo/semantics/nonPublished

Relevância:

100.00% 100.00%

Publicador:

Resumo:

info:eu-repo/semantics/published

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Mutant mice where tyrosine 136 of linker for activation of T cells (LAT) was replaced with a phenylalanine (Lat(Y136F) mice) develop a fast-onset lymphoproliferative disorder involving polyclonal CD4 T cells that produce massive amounts of Th2 cytokines and trigger severe inflammation and autoantibodies. We analyzed whether the Lat(Y136F) pathology constitutes a bona fide autoimmune disorder dependent on TCR specificity. Using adoptive transfer experiments, we demonstrated that the expansion and uncontrolled Th2-effector function of Lat(Y136F) CD4 cells are not triggered by an MHC class II-driven, autoreactive process. Using Foxp3EGFP reporter mice, we further showed that nonfunctional Foxp3(+) regulatory T cells are present in Lat(Y136F) mice and that pathogenic Lat(Y136F) CD4 T cells were capable of escaping the control of infused wild-type Foxp3(+) regulatory T cells. These results argue against a scenario where the Lat(Y136F) pathology is primarily due to a lack of functional Foxp3(+) regulatory T cells and suggest that a defect intrinsic to Lat(Y136F) CD4 T cells leads to a state of TCR-independent hyperactivity. This abnormal status confers Lat(Y136F) CD4 T cells with the ability to trigger the production of Abs and of autoantibodies in a TCR-independent, quasi-mitogenic fashion. Therefore, despite the presence of autoantibodies causative of severe systemic disease, the pathological conditions observed in Lat(Y136F) mice unfold in an Ag-independent manner and thus do not qualify as a genuine autoimmune disorder.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have previously shown that mice lacking the IL-12-specific receptor subunit ß2 (IL-12Rß2) develop more severe experimental autoimmune encephalomyelitis than wild-type (WT) mice. The mechanism underlying this phenomenon is not known; nor is it known whether deficiency of IL-12Rß2 impacts other autoimmune disorders similarly. In the present study we demonstrate that IL-12Rß2-/- mice develop earlier onset and more severe disease in the streptozotocin-induced model of diabetes, indicating predisposition of IL-12Rß2-deficient mice to autoimmune diseases. T cells from IL-12Rß2-/- mice exhibited significantly higher proliferative responses upon TCR stimulation. The numbers of naturally occurring CD25+CD4+ regulatory T cells (Tregs) in the thymus and spleen of IL-12Rß2-/- mice were comparable to those of WT mice. However, IL-12Rß2-/- mice exhibited a significantly reduced capacity to develop Tregs upon stimulation with TGF-ß, as shown by significantly lower numbers of CD25+CD4+ T cells that expressed Foxp3. Functionally, CD25+CD4+ Tregs derived from IL-12Rß2-/- mice were less efficient than those from WT mice in suppressing effector T cells. The role of IL-12Rß2 in the induction of Tregs was confirmed using small interfering RNA. These findings suggest that signaling via IL-12Rß2 regulates both the number and functional maturity of Treg cells, which indicates a novel mechanism underlying the regulation of autoimmune diseases by the IL-12 pathway. Copyright © 2008 by The American Association of Immunologists, Inc.