901 resultados para Regular Averaging Operators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 46E15, 54C55; Secondary 28B20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 54C35, 54C60.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Distortion risk measures summarize the risk of a loss distribution by means of a single value. In fuzzy systems, the Ordered Weighted Averaging (OWA) and Weighted Ordered Weighted Averaging (WOWA) operators are used to aggregate a large number of fuzzy rules into a single value. We show that these concepts can be derived from the Choquet integral, and then the mathematical relationship between distortion risk measures and the OWA and WOWA operators for discrete and finite random variables is presented. This connection offers a new interpretation of distortion risk measures and, in particular, Value-at-Risk and Tail Value-at-Risk can be understood from an aggregation operator perspective. The theoretical results are illustrated in an example and the degree of orness concept is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD thesis analyses networks of knowledge flows, focusing on the role of indirect ties in the knowledge transfer, knowledge accumulation and knowledge creation process. It extends and improves existing methods for mapping networks of knowledge flows in two different applications and contributes to two stream of research. To support the underlying idea of this thesis, which is finding an alternative method to rank indirect network ties to shed a new light on the dynamics of knowledge transfer, we apply Ordered Weighted Averaging (OWA) to two different network contexts. Knowledge flows in patent citation networks and a company supply chain network are analysed using Social Network Analysis (SNA) and the OWA operator. The OWA is used here for the first time (i) to rank indirect citations in patent networks, providing new insight into their role in transferring knowledge among network nodes; and to analyse a long chain of patent generations along 13 years; (ii) to rank indirect relations in a company supply chain network, to shed light on the role of indirectly connected individuals involved in the knowledge transfer and creation processes and to contribute to the literature on knowledge management in a supply chain. In doing so, indirect ties are measured and their role as means of knowledge transfer is shown. Thus, this thesis represents a first attempt to bridge the OWA and SNA fields and to show that the two methods can be used together to enrich the understanding of the role of indirectly connected nodes in a network. More specifically, the OWA scores enrich our understanding of knowledge evolution over time within complex networks. Future research can show the usefulness of OWA operator in different complex networks, such as the on-line social networks that consists of thousand of nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study surveys the ordered weighted averaging (OWA) operator literature using a citation network analysis. The main goals are the historical reconstruction of scientific development of the OWA field, the identification of the dominant direction of knowledge accumulation that emerged since the publication of the first OWA paper, and to discover the most active lines of research. The results suggest, as expected, that Yager's paper (IEEE Trans. Systems Man Cybernet, 18(1), 183-190, 1988) is the most influential paper and the starting point of all other research using OWA. Starting from his contribution, other lines of research developed and we describe them.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35L15, 35L80, 35S05, 35S30

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Purpose:1) To check self-knowledge and needs for orientation among regular class teachers working with low vision students; 2) To gather information to assist the training on visual deficiency of regular class teachers. Methods: A survey was conducted for the academic year of 1999 among those teachers working in public schools, Campinas/SP/Brazil, of which 11 were municipal and 9 state schools, respectively 79.0% and 90.0% of these schools. A self-administered questionnaire was used as data collection instrument. Results: The sample was composed of 50 teachers with a regular class experience averaging 20 years. Most of them, 94.0%, said that they had no specific preparation in the area of low vision. Only 18 teachers declared to have received some kind of information/orientation in order to work with their low vision students and of those only 15 teachers mentioned the kind of orientation received. The whole group of 50 declared interest in receiving information. From the information/orientation requested 66.0% mentioned extended working class materials, 50.0% visual performance and eye disease of their students and 46.0% visual acuity/visual field. Conclusion: It was detected that teachers of regular classes received none or little information about their low vision students but demonstrated interest in its obtention. It was also shown that those teachers are not prepared to work with visually impaired children.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the induced aggregation operators. The analysis begins with a revision of some basic concepts such as the induced ordered weighted averaging (IOWA) operator and the induced ordered weighted geometric (IOWG) operator. We then analyze the problem of decision making with Dempster-Shafer theory of evidence. We suggest the use of induced aggregation operators in decision making with Dempster-Shafer theory. We focus on the aggregation step and examine some of its main properties, including the distinction between descending and ascending orders and different families of induced operators. Finally, we present an illustrative example in which the results obtained using different types of aggregation operators can be seen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study the induced aggregation operators. The analysis begins with a revision of some basic concepts such as the induced ordered weighted averaging (IOWA) operator and the induced ordered weighted geometric (IOWG) operator. We then analyze the problem of decision making with Dempster-Shafer theory of evidence. We suggest the use of induced aggregation operators in decision making with Dempster-Shafer theory. We focus on the aggregation step and examine some of its main properties, including the distinction between descending and ascending orders and different families of induced operators. Finally, we present an illustrative example in which the results obtained using different types of aggregation operators can be seen.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[spa] Se presenta un nuevo modelo para la toma de decisiones basado en el uso de medidas de distancia y de operadores de agregación inducidos. Se introduce la distancia media ponderada ordenada inducida (IOWAD). Es un nuevo operador de agregación que extiende el operador OWA a través del uso de distancias y un proceso de reordenación de los argumentos basado en variables de ordenación inducidas. La principal ventaja el operador IOWAD es la posibilidad de utilizar una familia parametrizada de operadores de agregación entre la distancia individual máxima y la mínima. Se estudian algunas de sus principales propiedades y algunos casos particulares. Se desarrolla un ejemplo numérico en un problema de toma de decisiones sobre selección de inversiones. Se observa que la principal ventaja de este modelo en la toma de decisiones es la posibilidad de mostrar una visión más completa del proceso, de forma que el decisor está capacitado para seleccionar la alternativa que está más cerca de sus intereses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

[spa] Se presenta un nuevo modelo para la toma de decisiones basado en el uso de medidas de distancia y de operadores de agregación inducidos. Se introduce la distancia media ponderada ordenada inducida (IOWAD). Es un nuevo operador de agregación que extiende el operador OWA a través del uso de distancias y un proceso de reordenación de los argumentos basado en variables de ordenación inducidas. La principal ventaja el operador IOWAD es la posibilidad de utilizar una familia parametrizada de operadores de agregación entre la distancia individual máxima y la mínima. Se estudian algunas de sus principales propiedades y algunos casos particulares. Se desarrolla un ejemplo numérico en un problema de toma de decisiones sobre selección de inversiones. Se observa que la principal ventaja de este modelo en la toma de decisiones es la posibilidad de mostrar una visión más completa del proceso, de forma que el decisor está capacitado para seleccionar la alternativa que está más cerca de sus intereses.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.