898 resultados para Regular Averaging Operators


Relevância:

100.00% 100.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: Primary 46E15, 54C55; Secondary 28B20.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 54C35, 54C60.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This PhD thesis analyses networks of knowledge flows, focusing on the role of indirect ties in the knowledge transfer, knowledge accumulation and knowledge creation process. It extends and improves existing methods for mapping networks of knowledge flows in two different applications and contributes to two stream of research. To support the underlying idea of this thesis, which is finding an alternative method to rank indirect network ties to shed a new light on the dynamics of knowledge transfer, we apply Ordered Weighted Averaging (OWA) to two different network contexts. Knowledge flows in patent citation networks and a company supply chain network are analysed using Social Network Analysis (SNA) and the OWA operator. The OWA is used here for the first time (i) to rank indirect citations in patent networks, providing new insight into their role in transferring knowledge among network nodes; and to analyse a long chain of patent generations along 13 years; (ii) to rank indirect relations in a company supply chain network, to shed light on the role of indirectly connected individuals involved in the knowledge transfer and creation processes and to contribute to the literature on knowledge management in a supply chain. In doing so, indirect ties are measured and their role as means of knowledge transfer is shown. Thus, this thesis represents a first attempt to bridge the OWA and SNA fields and to show that the two methods can be used together to enrich the understanding of the role of indirectly connected nodes in a network. More specifically, the OWA scores enrich our understanding of knowledge evolution over time within complex networks. Future research can show the usefulness of OWA operator in different complex networks, such as the on-line social networks that consists of thousand of nodes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study surveys the ordered weighted averaging (OWA) operator literature using a citation network analysis. The main goals are the historical reconstruction of scientific development of the OWA field, the identification of the dominant direction of knowledge accumulation that emerged since the publication of the first OWA paper, and to discover the most active lines of research. The results suggest, as expected, that Yager's paper (IEEE Trans. Systems Man Cybernet, 18(1), 183-190, 1988) is the most influential paper and the starting point of all other research using OWA. Starting from his contribution, other lines of research developed and we describe them.

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We show that if E is an atomic Banach lattice with an ordercontinuous norm, A, B ∈ Lr(E) and MA,B is the operator on Lr(E) defined by MA,B(T) = AT B then ||MA,B||r = ||A||r||B||r but that there is no real α > 0 such that ||MA,B || ≥ α ||A||r||B ||r.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

2002 Mathematics Subject Classification: 35L15, 35L80, 35S05, 35S30

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monograph dissertation deals with kernel integral operators and their mapping properties on Euclidean domains. The associated kernels are weakly singular and examples of such are given by Green functions of certain elliptic partial differential equations. It is well known that mapping properties of the corresponding Green operators can be used to deduce a priori estimates for the solutions of these equations. In the dissertation, natural size- and cancellation conditions are quantified for kernels defined in domains. These kernels induce integral operators which are then composed with any partial differential operator of prescribed order, depending on the size of the kernel. The main object of study in this dissertation being the boundedness properties of such compositions, the main result is the characterization of their Lp-boundedness on suitably regular domains. In case the aforementioned kernels are defined in the whole Euclidean space, their partial derivatives of prescribed order turn out to be so called standard kernels that arise in connection with singular integral operators. The Lp-boundedness of singular integrals is characterized by the T1 theorem, which is originally due to David and Journé and was published in 1984 (Ann. of Math. 120). The main result in the dissertation can be interpreted as a T1 theorem for weakly singular integral operators. The dissertation deals also with special convolution type weakly singular integral operators that are defined on Euclidean spaces.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Low density parity-check (LDPC) codes are a class of linear block codes that are decoded by running belief propagation (BP) algorithm or log-likelihood ratio belief propagation (LLR-BP) over the factor graph of the code. One of the disadvantages of LDPC codes is the onset of an error floor at high values of signal to noise ratio caused by trapping sets. In this paper, we propose a two stage decoder to deal with different types of trapping sets. Oscillating trapping sets are taken care by the first stage of the decoder and the elementary trapping sets are handled by the second stage of the decoder. Simulation results on the regular PEG (504,252,3,6) code and the irregular PEG (1024,518,15,8) code shows that the proposed two stage decoder performs significantly better than the standard decoder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Asymptotic estimates of the norms of orbits of certain operators that commute with the classical Volterra operator V acting on L-P[0,1], with 1 0, but also to operators of the form phi (V), where phi is a holomorphic function at zero. The method to obtain the estimates is based on the fact that the Riemann-Liouville operator as well as the Volterra operator can be related to the Levin-Pfluger theory of holomorphic functions of completely regular growth. Different methods, such as the Denjoy-Carleman theorem, are needed to analyze the behavior of the orbits of I - cV, where c > 0. The results are applied to the study of cyclic properties of phi (V), where phi is a holomorphic function at 0.